本文主要是介绍Hadoop3:MapReduce中Reduce阶段自定义OutputFormat逻辑,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
一、情景描述
我们知道,在MapTask
阶段开始时,需要InputFormat
来读取数据
而在ReduceTask
阶段结束时,将处理完成的数据,输出到磁盘,此时就要用到OutputFormat
在之前的程序中,我们都没有设置过这部分配置
所以,采用的是默认输出格式:TextOutputFormat
在实际工作中,我们的输出不一定是到磁盘,可能是输出到MySQL、HBase
等
那么,如何实现自定义的OutputFormat
?
二、案例
1、源数据
http://www.baidu.com
http://www.google.com
http://cn.bing.com
http://www.atguigu.com
http://www.sohu.com
http://www.baidu.com
http://www.sina.com
http://www.sin2a.com
http://www.baidu.com
http://www.sin2desa.com
http://www.sindsafa.com
2、需求分析
过滤输入的log
日志,包含atguigu
的网站输出到e:/atguigu.log
,不包含atguigu
的网站输出到e:/other.log
。
3、代码实现
LogMapper.java
package com.atguigu.mapreduce.outputformat;import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;import java.io.IOException;public class LogMapper extends Mapper<LongWritable, Text,Text, NullWritable> {@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {// http://www.baidu.com//http://www.google.com// (http://www.google.com, NullWritable)// 不做任何处理context.write(value, NullWritable.get());}
}
LogReducer.java
package com.atguigu.mapreduce.outputformat;import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;public class LogReducer extends Reducer<Text, NullWritable, Text, NullWritable> {@Overrideprotected void reduce(Text key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {// http://www.baidu.com// http://www.baidu.com// 防止有相同数据,丢数据for (NullWritable value : values) {context.write(key, NullWritable.get());}}
}
LogRecordWriter.java
package com.atguigu.mapreduce.outputformat;import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;import java.io.IOException;public class LogRecordWriter extends RecordWriter<Text, NullWritable> {private FSDataOutputStream atguiguOut;private FSDataOutputStream otherOut;public LogRecordWriter(TaskAttemptContext job) {// 创建两条流try {FileSystem fs = FileSystem.get(job.getConfiguration());atguiguOut = fs.create(new Path("D:\\hadoop\\atguigu.log"));otherOut = fs.create(new Path("D:\\hadoop\\other.log"));} catch (IOException e) {e.printStackTrace();}}@Overridepublic void write(Text key, NullWritable value) throws IOException, InterruptedException {String log = key.toString();// 具体写if (log.contains("atguigu")){atguiguOut.writeBytes(log+"\n");}else {otherOut.writeBytes(log+"\n");}}@Overridepublic void close(TaskAttemptContext context) throws IOException, InterruptedException {// 关流IOUtils.closeStream(atguiguOut);IOUtils.closeStream(otherOut);}
}
LogOutputFormat.java
package com.atguigu.mapreduce.outputformat;import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;public class LogOutputFormat extends FileOutputFormat<Text, NullWritable> {@Overridepublic RecordWriter<Text, NullWritable> getRecordWriter(TaskAttemptContext job) throws IOException, InterruptedException {LogRecordWriter lrw = new LogRecordWriter(job);return lrw;}
}
LogDriver.java
package com.atguigu.mapreduce.outputformat;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;public class LogDriver {public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {Configuration conf = new Configuration();Job job = Job.getInstance(conf);job.setJarByClass(LogDriver.class);job.setMapperClass(LogMapper.class);job.setReducerClass(LogReducer.class);job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(NullWritable.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(NullWritable.class);//设置自定义的outputformatjob.setOutputFormatClass(LogOutputFormat.class);FileInputFormat.setInputPaths(job, new Path("D:\\input\\inputoutputformat"));//虽然我们自定义了outputformat,但是因为我们的outputformat继承自fileoutputformat//而fileoutputformat要输出一个_SUCCESS文件,所以在这还得指定一个输出目录FileOutputFormat.setOutputPath(job, new Path("D:\\hadoop\\output1111"));boolean b = job.waitForCompletion(true);System.exit(b ? 0 : 1);}
}
3、测试
三、总结
关键文件:
LogRecordWriter.java
LogOutputFormat.java
LogDriver.java
//设置自定义的outputformatjob.setOutputFormatClass(LogOutputFormat.class);
这篇关于Hadoop3:MapReduce中Reduce阶段自定义OutputFormat逻辑的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!