YOLOv9改进策略【损失函数篇】| 利用MPDIoU,加强边界框回归的准确性

本文主要是介绍YOLOv9改进策略【损失函数篇】| 利用MPDIoU,加强边界框回归的准确性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、背景

  1. 目标检测和实例分割中的关键问题
    • 现有的大多数边界框回归损失函数在不同的预测结果下可能具有相同的值,这降低了边界框回归的收敛速度和准确性。
  2. 现有损失函数的不足
    • 现有的基于 ℓ n \ell_n n范数的损失函数简单但对各种尺度敏感。
    • 当预测框与真实框具有相同的宽高比但不同的宽度和高度值时,现有损失函数可能会存在问题,限制了收敛速度和准确性。

文章目录

  • 一、背景
  • 二、原理
    • 2.1 IoU计算原理
    • 2.2. 基于最小点距离的IoU度量
    • 2.3. 作为边界框回归损失函数
    • 2.4 MPDIoU的计算公式
  • 三、添加步骤
    • 3.1 utils\metrics.py
    • 3.2 修改utils\loss_tal_dual.py
  • 四、总结


MPDIoU(Intersection over Union with Minimum Points Distance)是一种用于高效且准确的边界框回归的损失函数。

二、原理

2.1 IoU计算原理

IoU(Intersection over Union)即交并比,用于衡量预测边界框和真实边界框的重合程度。

1. 交集计算:
- 首先确定预测边界框和真实边界框的交集区域。
- 对于两个以左上角和右下角坐标表示的矩形框,分别找出它们在横坐标和纵坐标方向上的重叠区间。
- 如果两个矩形框在横坐标和纵坐标方向上都有重叠部分,那么这个重叠区域就是一个矩形,其面积就是交集的大小。
2. 并集计算:
- 计算预测边界框和真实边界框的并集区域。
- 并集的大小等于两个矩形框各自的面积之和减去它们的交集面积。
3. 比值计算:
- 最后,IoU的值就是交集面积与并集面积的比值。

2.2. 基于最小点距离的IoU度量

  • 原论文中受水平矩形的几何特性启发,设计了一种基于最小点距离的新型IoU度量MPDIoU,直接最小化预测边界框和真实边界框的左上角和右下角点之间的距离。
  • MPDIoU的计算通过两个任意凸形状 A A A B B B,用其左上角和右下角点的坐标来表示,通过计算两个框的交集与并集之比,再减去左上角和右下角两点距离的归一化值来得到MPDIoU

2.3. 作为边界框回归损失函数

  • 在训练阶段,通过最小化基于MPDIoU的损失函数 L M P D I o U = 1 − M P D I o U L_{MPDIoU}=1-MPDIoU LMPDIoU=1MPDIoU,使模型预测的每个边界框 B p r d B_{prd} Bprd接近其真实框 B g t B_{gt} Bgt
  • 现有损失函数中的所有因素(如非重叠区域、中心点距离、宽高偏差等)都可以通过左上角和右下角两点的坐标确定,这意味着提出的 L M P D I o U L_{MPDIoU} LMPDIoU不仅考虑了这些因素,还简化了计算过程。

在这里插入图片描述

2.4 MPDIoU的计算公式

  1. MPDIoU的计算公式:

    • M P D I o U = A ∩ B A ∪ B − d 1 2 w 2 + h 2 − d 2 2 w 2 + h 2 MPDIoU=\frac{A\cap B}{A\cup B}-\frac{d_{1}^{2}}{w^{2}+h^{2}}-\frac{d_{2}^{2}}{w^{2}+h^{2}} MPDIoU=ABABw2+h2d12w2+h2d22
    • 其中 A A A B B B是两个任意凸形状, ( x A 1 , y A 1 ) (x_{A1}, y_{A1}) (xA1,yA1) ( x A 2 , y A 2 ) (x_{A2}, y_{A2}) (xA2,yA2)表示(A)的左上角和右下角点坐标, ( x B 1 , y B 1 ) (x_{B1}, y_{B1}) (xB1,yB1) ( x B 2 , y B 2 ) (x_{B2}, y_{B2}) (xB2,yB2)表示 B B B的左上角和右下角点坐标。
    • d 1 2 = ( x 1 B − x 1 A ) 2 + ( y 1 B − y 1 A ) 2 d_{1}^{2}=(x_{1}^{B}-x_{1}^{A})^{2}+(y_{1}^{B}-y_{1}^{A})^{2} d12=(x1Bx1A)2+(y1By1A)2 d 2 2 = ( x 2 B − x 2 A ) 2 + ( y 2 B − y 2 A ) 2 d_{2}^{2}=(x_{2}^{B}-x_{2}^{A})^{2}+(y_{2}^{B}-y_{2}^{A})^{2} d22=(x2Bx2A)2+(y2By2A)2
  2. 基于MPDIoU的损失函数计算公式:

    • L M P D I o U = 1 − M P D I o U L_{MPDIoU}=1-MPDIoU LMPDIoU=1MPDIoU

三、添加步骤

3.1 utils\metrics.py

此处需要查看的文件是utils\metrics.py

metrics.py中定义了模型的损失函数和计算方法,我们想要加入新的损失函数就只需要将代码放到这个文件内即可。YOLOv9原模型中使用的是CIoU,并且在原YOLOv9的代码中已经实现了MPDIoU的代码,

MPDIoU的代码在utils\metrics.py的第254行,如下:

def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, MDPIoU=False, feat_h=640, feat_w=640, eps=1e-7):# Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)# Get the coordinates of bounding boxesif xywh:  # transform from xywh to xyxy(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_else:  # x1, y1, x2, y2 = box1b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + epsw2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps# Intersection areainter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)# Union Areaunion = w1 * h1 + w2 * h2 - inter + eps# IoUiou = inter / unionif CIoU or DIoU or GIoU:cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)  # convex (smallest enclosing box) widthch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1)  # convex heightif CIoU or DIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1c2 = cw ** 2 + ch ** 2 + eps  # convex diagonal squaredrho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4  # center dist ** 2if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)with torch.no_grad():alpha = v / (v - iou + (1 + eps))return iou - (rho2 / c2 + v * alpha)  # CIoUreturn iou - rho2 / c2  # DIoUc_area = cw * ch + eps  # convex areareturn iou - (c_area - union) / c_area  # GIoU https://arxiv.org/pdf/1902.09630.pdfelif MDPIoU:d1 = (b2_x1 - b1_x1) ** 2 + (b2_y1 - b1_y1) ** 2d2 = (b2_x2 - b1_x2) ** 2 + (b2_y2 - b1_y2) ** 2mpdiou_hw_pow = feat_h ** 2 + feat_w ** 2return iou - d1 / mpdiou_hw_pow - d2 / mpdiou_hw_pow  # MPDIoUreturn iou  # IoU

在这里插入图片描述

3.2 修改utils\loss_tal_dual.py

utils\loss_tal_dual.py是损失函数的辅助分支+主分支损失计算文件。

utils\loss_tal_dual.py的75行处修改成如下代码,使模型调用此MPDIoU损失函数。


iou = bbox_iou(pred_bboxes_pos, target_bboxes_pos, xywh=False, MPDIoU=True)

在这里插入图片描述

四、总结

当发现预测边界框和真实边界框具有相同的宽高比但不同的宽度和高度值时,MPDIoU损失函数比现有损失函数更有效,此时可以尝试将损失函数修改成MPDIoU查看效果。

这篇关于YOLOv9改进策略【损失函数篇】| 利用MPDIoU,加强边界框回归的准确性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1109069

相关文章

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

SpringRetry重试机制之@Retryable注解与重试策略详解

《SpringRetry重试机制之@Retryable注解与重试策略详解》本文将详细介绍SpringRetry的重试机制,特别是@Retryable注解的使用及各种重试策略的配置,帮助开发者构建更加健... 目录引言一、SpringRetry基础知识二、启用SpringRetry三、@Retryable注解

MySQL 分区与分库分表策略应用小结

《MySQL分区与分库分表策略应用小结》在大数据量、复杂查询和高并发的应用场景下,单一数据库往往难以满足性能和扩展性的要求,本文将详细介绍这两种策略的基本概念、实现方法及优缺点,并通过实际案例展示如... 目录mysql 分区与分库分表策略1. 数据库水平拆分的背景2. MySQL 分区策略2.1 分区概念

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda