vue 精选评论词云 集成echarts-wordcloud TF-IDF算法

本文主要是介绍vue 精选评论词云 集成echarts-wordcloud TF-IDF算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这一期在我们的系统里集成词云组件,开发的功能是景区精选评论的词云展示功能。

这个界面的逻辑是这样的:

在数据框里输入城市,可以是模糊搜索的,选择城市;

选择城市后,发往后台去查询该城市的精选评论,由于一个城市会有很多景点,所以精选评论也有很多,采用TF-IDF算法,计算关键词,返回给前端,使用echarts词云组件进行可视化;

再次输入城市,可以切换城市,同时词云会重新渲染。

1 词云页面开发

首先前端安装词云,(注意这边的echarts必须是v5+,如果是4就要使用echarts-wordcloud 1.0版本)

npm install echarts-wordcloud@2

然后在main.js中引入

Vue.component('v-chart', ECharts);
import "echarts-wordcloud"

创建一个WordCloud.vue组件,组件的高度和数据从外部传入

<template><v-chartstyle="width:100%; ":option="chartOption":style="{ height: height }"autoresize/>
</template><script>export default {name: 'WordCloud',props: {words: {type: Array,required: true},height: {type: String,required: true},},watch: {words: {immediate: true,handler() {this.initChart();}}},data() {return {chartOption: {},maskImage: new Image(),data: [],};},async mounted() {// this.initChart()},methods: {initChart() {// this.maskImage.src = require('@/assets/rensen.png')console.log('init wordcloud...')console.log(this.words)setTimeout(() => {this.chartOption = this.buildChartOption();// console.log(this.chartOption)}, 1000)},buildChartOption() {// console.log(this.maskImage)const option = {// background: '#FFFFFF',tooltip: {formatter: '{b}<br/> 出现频次:{c}  '},series: [ {// maskImage: this.maskImage,type: 'wordCloud',gridSize: 2,sizeRange: [20, 80],// shape: 'heart',layoutAnimation: true,textStyle:{textBorderColor: 'rgba(255,255,255,0.3)',textBorderWidth: 1,color: ()=>{return 'rgb(' + [Math.round(Math.random() * 160),Math.round(Math.random() * 160),Math.round(Math.random() * 160)].join(',') + ')';},emphasis: {fontSize: 20,shadowBlur: 10,shadowColor: 'rgba(255,255,255,.1)'}},data: this.words} ]};return option;},}
};
</script>

创建Word.vue 词云组件页面,这个组件集成了el-autocomplete组件,可以远程搜索城市,这个在上一篇博文里有说过怎么开发了,这边主要是集成WordCloud.vue组件,通过get_wordcloud 方法来从后端加载精选评论词频分析数据。

<template><div><el-row :gutter="20"><!-- 输入框放在图表上方 --><el-autocompletev-model="city":fetch-suggestions="querySearch"placeholder="请输入城市名称"@select="handleSelect"style="width: 300px; margin-left: 10px;"clearable></el-autocomplete><!-- Top chart --><el-col :span="24"><div class="chart" :style="{ height: parentHeight }"><word-cloud :height="childHeight" :words="words"/></div></el-col></el-row></div>
</template><script>
import {getCities, get_wordcloud} from "@/api/tour";
import WordCloud from "@/components/WordCloud.vue";export default {name: 'Dashboard',data(){return{city: '',words: [],}},components: {WordCloud},mounted() {get_wordcloud(this.city).then(res=>{this.words = res.data.data})},computed: {parentHeight() {return `calc(100vh - 140px)`; // 父组件高度},childHeight() {return `calc(100vh - 140px)`; // 子组件高度}},methods: {// el-autocomplete组件的cb 为回调函数需要把后端返回的值传给它querySearch(queryString, cb) {// 发送请求到Flask后端获取模糊搜索结果getCities(queryString).then(res=>{// console.log(res.data.data.map(i=>{return i.value}))cb(res.data.data)})},// el-autocomplete组件选择handleSelect(item) {this.city = item.value; // 选择后将城市名存储在city变量中console.log('选择了:', this.city);this.$message('加载'+this.city+'数据成功', 'success', 3000)get_wordcloud(this.city).then(res=>{this.words = res.data.data})},},
};
</script><style scoped>
.chart {/*display: flex;*/align-items: center;justify-content: center;margin-top: 10px;color: white;font-size: 20px;border-radius: 10px;background-color: #f4eeee;
}
</style>

添加一个方法:

// 词云
export function  get_wordcloud(keyword){return request({url: `/tour/wordcloud`,method: 'get',params:{ keyword: keyword }});
}

2 后端接口开发

后端接口根据前端传递过来关键词去查询该城市下的所有精选评论数据,然后使用jieba分词进行中文分析,过滤2个字以下的内容,然后创建TF-IDF向量化器计算每个词的TF-IDF词,排序之后,获取前100的重要词返回给前端。

# 词云接口
@main.route('/tour/wordcloud', methods=['GET'])
def get_wordcloud():keyword = request.args.get('keyword', '')if keyword=='':keyword = '东京'try:# 查询符合条件的 Tourcomments = db.session.query(Tour.select_comment).filter(Tour.city == keyword).all()# 提取评论文本comments_text = [comment[0] for comment in comments if comment[0] is not None]# 使用 jieba 分词def jieba_tokenizer(text):return [word for word in jieba.cut(text) if len(word) >= 2]# 创建 TF-IDF 向量化器vectorizer = TfidfVectorizer(tokenizer=jieba_tokenizer, stop_words=None)  # 可以根据需要添加停用词tfidf_matrix = vectorizer.fit_transform(comments_text)# 获取词汇表feature_names = vectorizer.get_feature_names_out()# 计算每个词的 TF-IDF 值tfidf_sum = tfidf_matrix.sum(axis=0).A1  # 将稀疏矩阵转换为数组tfidf_dict = dict(zip(feature_names, tfidf_sum))# 按 TF-IDF 值排序,提取前 100 个重要词sorted_tfidf = sorted(tfidf_dict.items(), key=lambda x: x[1], reverse=True)[:100]# TF-IDF 值 取整了top_100_words = [{"name": word, "value": int(score)} for word, score in sorted_tfidf]# print(top_100_words)return make_response(code=0, data=top_100_words)except Exception as e:return make_response(code=1, message=str(e))

3 效果

3.1 东京景区评论词云

在这里插入图片描述

3.2 可以搜索选择其他城市

在这里插入图片描述

3.3 切换城市,例如名古屋

在这里插入图片描述

4 补充TF-IDF介绍

TF-IDF(Term Frequency-Inverse Document Frequency)是一种用于信息检索和文本挖掘的权重计算方法。 它旨在评估一个词在一篇文档中的重要性,具体而言:

1. **词频(Term Frequency, TF)**:表示一个词在文档中出现的频率。频率越高,表示该词对文档的贡献越大。

2. **逆文档频率(Inverse Document Frequency, IDF)**:表示一个词在所有文档中的稀有程度。IDF 值通过总文档数除以包含该词的文档数,然后取对数来计算。# - 公式为 IDF(w) = log(总文档数 / (包含词 w 的文档数 + 1))# - 一个常见的词(如“的”、“是”)在许多文档中出现,IDF 值较低,表示它的区分能力弱。#

3. **TF-IDF 值**:通过将词频和逆文档频率相乘得到。TF-IDF 值高的词在特定文档中重要性较高,且在其他文档中较少出现。## 在文本分析中,TF-IDF 常用于特征提取,以帮助识别关键词和主题。

这篇关于vue 精选评论词云 集成echarts-wordcloud TF-IDF算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1108415

相关文章

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外

Docker集成CI/CD的项目实践

《Docker集成CI/CD的项目实践》本文主要介绍了Docker集成CI/CD的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、引言1.1 什么是 CI/CD?1.2 docker 在 CI/CD 中的作用二、Docke

React实现原生APP切换效果

《React实现原生APP切换效果》最近需要使用Hybrid的方式开发一个APP,交互和原生APP相似并且需要IM通信,本文给大家介绍了使用React实现原生APP切换效果,文中通过代码示例讲解的非常... 目录背景需求概览技术栈实现步骤根据 react-router-dom 文档配置好路由添加过渡动画使用

SpringBoot集成SOL链的详细过程

《SpringBoot集成SOL链的详细过程》Solanaj是一个用于与Solana区块链交互的Java库,它为Java开发者提供了一套功能丰富的API,使得在Java环境中可以轻松构建与Solana... 目录一、什么是solanaj?二、Pom依赖三、主要类3.1 RpcClient3.2 Public

SpringBoot3集成swagger文档的使用方法

《SpringBoot3集成swagger文档的使用方法》本文介绍了Swagger的诞生背景、主要功能以及如何在SpringBoot3中集成Swagger文档,Swagger可以帮助自动生成API文档... 目录一、前言1. API 文档自动生成2. 交互式 API 测试3. API 设计和开发协作二、使用

SpringBoot如何集成Kaptcha验证码

《SpringBoot如何集成Kaptcha验证码》本文介绍了如何在Java开发中使用Kaptcha生成验证码的功能,包括在pom.xml中配置依赖、在系统公共配置类中添加配置、在控制器中添加生成验证... 目录SpringBoot集成Kaptcha验证码简介实现步骤1. 在 pom.XML 配置文件中2.