吴恩达谈AI未来:Agentic Workflow、推理成本下降与开源的优势

本文主要是介绍吴恩达谈AI未来:Agentic Workflow、推理成本下降与开源的优势,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

近年来,人工智能(AI)领域的发展势如破竹,然而随着技术的普及,市场也开始出现对AI泡沫的质疑声。2024年8月,AI领域的权威专家吴恩达(Andrew Ng)在与ARK Invest的对谈中,分享了他对AI产业发展的乐观看法,并重点讨论了Agentic Workflow的未来、训练与推理成本的下降,以及开源模型的优势。本文将详细解析吴恩达的访谈内容,展望AI领域未来的发展趋势。

一、AI发展未到瓶颈,产业链才是真正挑战

首先,吴恩达针对近年来关于AI技术发展瓶颈的论调做出了回应。他指出,过去十年间,AI技术不断取得突破,大规模模型的发布一再证明了这些观点的错误。他对目前仍有人坚持“AI已遇瓶颈”感到惊讶,认为AI的技术发展仍有巨大潜力,产业的扩展空间也非常广阔。

然而,吴恩达指出,AI产业发展的挑战主要在于产业链的不完善,而非技术本身。当前,GPU的供应问题、人才不足等因素阻碍了许多潜在的AI项目落地。许多公司虽具备开发大型AI模型的能力,但由于硬件和人力资源的限制,导致项目难以顺利进行。吴恩达强调,一旦这些产业链问题得到解决,AI的落地速度将大幅提升,AI的应用潜力将得到全面释放。

二、Agentic Workflow:推动AI迭代的未来趋势

在访谈中,吴恩达特别强调了Agentic Workflow的潜力。传统的AI应用往往是一次性输入提示,然后输出结果。但吴恩达认为,这种方式并不符合人类的工作流程。与之相比,Agentic Workflow更类似于人类的写作过程,是一种反复迭代的工作模式。这种模式能够显著提升AI应用的准确性,特别是在复杂任务的执行上。

吴恩达分享了一个Agentic Workflow的实例:在一次斯坦福大学的演示中,由于网络搜索失败,Agent系统自动切换到了备用的维基百科搜索,最终确保了演示的成功。这表明Agent系统具备处理失败并自主修复的能力,而这种能力在未来有望进一步增强。

尽管如此,吴恩达也承认,Agentic Workflow目前仍面临推理速度瓶颈。AI应用往往需要反复调用模型进行推理,而这一过程耗时较长。吴恩达认为,提升推理速度将是下一波AI应用的关键。一旦推理速度大幅提高,许多应用的客户体验将显著改善,AI的广泛应用将变得更加可行。

三、训练和推理成本的下降:AI普及的关键

AI模型的训练和推理成本一直是阻碍AI普及的重要因素。吴恩达在访谈中引用了ARK Invest的报告,报告预测训练成本将每年下降75%,推理成本将每年下降86%。这一趋势将极大地推动AI技术的进一步创新和应用。随着成本的下降,越来越多的企业将能够负担得起AI技术,AI的商业化进程也将加速。

吴恩达特别强调了推理速度的重要性。他指出,在人类的阅读速度约为每秒6个token的情况下,AI需要生成和处理大量token,以适应复杂的工作任务。吴恩达认为,随着硬件技术的进步,推理速度的提升将成为未来几年内AI发展的重要推动力,这将直接影响到Agentic Workflow等应用的广泛普及。

四、MLOps与AI堆栈:推动AI持续进化

谈及MLOps(机器学习运维),吴恩达指出,这一领域在未来将发挥越来越重要的作用。MLOps不仅帮助企业更好地管理和部署AI模型,还推动了AI技术栈的不断进化。他提到,目前有许多云服务商正在开发用于编排AI模型的层次化服务,以便企业能够更高效地构建和部署AI应用。

除了MLOps,吴恩达还提到Agentic Framework这一即将出现的新框架,这个框架旨在提升AI应用的能力。虽然吴恩达没有深入探讨这一框架的具体细节,但可以预见的是,未来的AI应用将会在框架层面上得到进一步的优化,推动AI在实际场景中的应用和落地。

五、开源的力量:AI创新的驱动引擎

在讨论AI的商业模式时,吴恩达表达了对开源模型的支持。他认为,开源的力量远超闭源的短期优势,能够驱动AI技术的持续创新。Meta在Llama和PyTorch的开源项目上取得了巨大的成功,证明了开源模型的商业价值。吴恩达认为,开源不仅能够降低企业对竞争对手专有平台的依赖,还能促进整个AI生态系统的繁荣。

吴恩达对当前一些反对开源的呼声感到困惑。他认为,这种行为将会抑制全球的创新,尤其是对美国的AI产业造成负面影响。开源代表着全球技术供应链中的开放和共享文化,推动开源不仅能为企业带来商业价值,也能让世界变得更加美好。

六、结语与未来展望

通过本次访谈,吴恩达为我们展示了AI领域的广阔前景。他对Agentic Workflow、训练和推理成本的下降以及开源的推动力充满信心。虽然AI产业仍面临一些挑战,尤其是在硬件、人才和推理速度上,但吴恩达坚信,随着技术的不断进步,AI的应用前景将更加广阔。

展望未来,吴恩达乐观地认为,到2030年,AI软件市场将会达到13万亿美元的规模,AI产业将迎来新的繁荣期。对开发者和企业而言,紧跟技术趋势,优化AI应用场景,将是抓住这波AI浪潮的关键。
在这里插入图片描述

这篇关于吴恩达谈AI未来:Agentic Workflow、推理成本下降与开源的优势的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1108264

相关文章

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Spring AI ectorStore的使用流程

《SpringAIectorStore的使用流程》SpringAI中的VectorStore是一种用于存储和检索高维向量数据的数据库或存储解决方案,它在AI应用中发挥着至关重要的作用,本文给大家介... 目录一、VectorStore的基本概念二、VectorStore的核心接口三、VectorStore的

无需邀请码!Manus复刻开源版OpenManus下载安装与体验

《无需邀请码!Manus复刻开源版OpenManus下载安装与体验》Manus的完美复刻开源版OpenManus安装与体验,无需邀请码,手把手教你如何在本地安装与配置Manus的开源版OpenManu... Manus是什么?Manus 是 Monica 团队推出的全球首款通用型 AI Agent。Man

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2

Spring AI集成DeepSeek实现流式输出的操作方法

《SpringAI集成DeepSeek实现流式输出的操作方法》本文介绍了如何在SpringBoot中使用Sse(Server-SentEvents)技术实现流式输出,后端使用SpringMVC中的S... 目录一、后端代码二、前端代码三、运行项目小天有话说题外话参考资料前面一篇文章我们实现了《Spring

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首