吴恩达谈AI未来:Agentic Workflow、推理成本下降与开源的优势

本文主要是介绍吴恩达谈AI未来:Agentic Workflow、推理成本下降与开源的优势,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

近年来,人工智能(AI)领域的发展势如破竹,然而随着技术的普及,市场也开始出现对AI泡沫的质疑声。2024年8月,AI领域的权威专家吴恩达(Andrew Ng)在与ARK Invest的对谈中,分享了他对AI产业发展的乐观看法,并重点讨论了Agentic Workflow的未来、训练与推理成本的下降,以及开源模型的优势。本文将详细解析吴恩达的访谈内容,展望AI领域未来的发展趋势。

一、AI发展未到瓶颈,产业链才是真正挑战

首先,吴恩达针对近年来关于AI技术发展瓶颈的论调做出了回应。他指出,过去十年间,AI技术不断取得突破,大规模模型的发布一再证明了这些观点的错误。他对目前仍有人坚持“AI已遇瓶颈”感到惊讶,认为AI的技术发展仍有巨大潜力,产业的扩展空间也非常广阔。

然而,吴恩达指出,AI产业发展的挑战主要在于产业链的不完善,而非技术本身。当前,GPU的供应问题、人才不足等因素阻碍了许多潜在的AI项目落地。许多公司虽具备开发大型AI模型的能力,但由于硬件和人力资源的限制,导致项目难以顺利进行。吴恩达强调,一旦这些产业链问题得到解决,AI的落地速度将大幅提升,AI的应用潜力将得到全面释放。

二、Agentic Workflow:推动AI迭代的未来趋势

在访谈中,吴恩达特别强调了Agentic Workflow的潜力。传统的AI应用往往是一次性输入提示,然后输出结果。但吴恩达认为,这种方式并不符合人类的工作流程。与之相比,Agentic Workflow更类似于人类的写作过程,是一种反复迭代的工作模式。这种模式能够显著提升AI应用的准确性,特别是在复杂任务的执行上。

吴恩达分享了一个Agentic Workflow的实例:在一次斯坦福大学的演示中,由于网络搜索失败,Agent系统自动切换到了备用的维基百科搜索,最终确保了演示的成功。这表明Agent系统具备处理失败并自主修复的能力,而这种能力在未来有望进一步增强。

尽管如此,吴恩达也承认,Agentic Workflow目前仍面临推理速度瓶颈。AI应用往往需要反复调用模型进行推理,而这一过程耗时较长。吴恩达认为,提升推理速度将是下一波AI应用的关键。一旦推理速度大幅提高,许多应用的客户体验将显著改善,AI的广泛应用将变得更加可行。

三、训练和推理成本的下降:AI普及的关键

AI模型的训练和推理成本一直是阻碍AI普及的重要因素。吴恩达在访谈中引用了ARK Invest的报告,报告预测训练成本将每年下降75%,推理成本将每年下降86%。这一趋势将极大地推动AI技术的进一步创新和应用。随着成本的下降,越来越多的企业将能够负担得起AI技术,AI的商业化进程也将加速。

吴恩达特别强调了推理速度的重要性。他指出,在人类的阅读速度约为每秒6个token的情况下,AI需要生成和处理大量token,以适应复杂的工作任务。吴恩达认为,随着硬件技术的进步,推理速度的提升将成为未来几年内AI发展的重要推动力,这将直接影响到Agentic Workflow等应用的广泛普及。

四、MLOps与AI堆栈:推动AI持续进化

谈及MLOps(机器学习运维),吴恩达指出,这一领域在未来将发挥越来越重要的作用。MLOps不仅帮助企业更好地管理和部署AI模型,还推动了AI技术栈的不断进化。他提到,目前有许多云服务商正在开发用于编排AI模型的层次化服务,以便企业能够更高效地构建和部署AI应用。

除了MLOps,吴恩达还提到Agentic Framework这一即将出现的新框架,这个框架旨在提升AI应用的能力。虽然吴恩达没有深入探讨这一框架的具体细节,但可以预见的是,未来的AI应用将会在框架层面上得到进一步的优化,推动AI在实际场景中的应用和落地。

五、开源的力量:AI创新的驱动引擎

在讨论AI的商业模式时,吴恩达表达了对开源模型的支持。他认为,开源的力量远超闭源的短期优势,能够驱动AI技术的持续创新。Meta在Llama和PyTorch的开源项目上取得了巨大的成功,证明了开源模型的商业价值。吴恩达认为,开源不仅能够降低企业对竞争对手专有平台的依赖,还能促进整个AI生态系统的繁荣。

吴恩达对当前一些反对开源的呼声感到困惑。他认为,这种行为将会抑制全球的创新,尤其是对美国的AI产业造成负面影响。开源代表着全球技术供应链中的开放和共享文化,推动开源不仅能为企业带来商业价值,也能让世界变得更加美好。

六、结语与未来展望

通过本次访谈,吴恩达为我们展示了AI领域的广阔前景。他对Agentic Workflow、训练和推理成本的下降以及开源的推动力充满信心。虽然AI产业仍面临一些挑战,尤其是在硬件、人才和推理速度上,但吴恩达坚信,随着技术的不断进步,AI的应用前景将更加广阔。

展望未来,吴恩达乐观地认为,到2030年,AI软件市场将会达到13万亿美元的规模,AI产业将迎来新的繁荣期。对开发者和企业而言,紧跟技术趋势,优化AI应用场景,将是抓住这波AI浪潮的关键。
在这里插入图片描述

这篇关于吴恩达谈AI未来:Agentic Workflow、推理成本下降与开源的优势的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1108264

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

AI行业应用(不定期更新)

ChatPDF 可以让你上传一个 PDF 文件,然后针对这个 PDF 进行小结和提问。你可以把各种各样你要研究的分析报告交给它,快速获取到想要知道的信息。https://www.chatpdf.com/