【算法进阶2-动态规划】最长公共子序列、欧几里得算法-分数、RSA算法-密码于加密

本文主要是介绍【算法进阶2-动态规划】最长公共子序列、欧几里得算法-分数、RSA算法-密码于加密,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 最长公共子序列
2 欧几里得算法
2.1 欧几里得算法-分数
3 RSA算法-密码于加密

1 最长公共子序列

在这里插入图片描述

-个序列的子序列是在该序列中删去若干元素后得 到的序列。
例:“ABCD”和“BDF”都是“ABCDEFG”的子序列最长公共子序列(LCS)问题:给定两个序列X和Y,求X和Y长度最大的公共子序列。
例:X="ABBCBDE" Y="DBBCDB" LCS(X,Y)="BBCD"应用场景:字符串相似度比对

在这里插入图片描述

from typing import Tupledef lcs_length(x: str, y: str) -> int:"""计算两个字符串的最长公共子序列 (LCS) 的长度。使用动态规划方法解决LCS问题。LCS问题是指在两个字符串中找到一个最长的子序列,使得这个子序列在两个字符串中都出现,并且保持其相对顺序不变。:param x: 第一个字符串:param y: 第二个字符串:return: 返回两个字符串的最长公共子序列的长度"""m = len(x)  # 第一个字符串的长度n = len(y)  # 第二个字符串的长度# 创建一个 (m+1) x (n+1) 的二维列表 c,用于存储子问题的解# c[i][j] 表示字符串 x 的前 i 个字符和字符串 y 的前 j 个字符的最长公共子序列的长度c = [[0 for _ in range(n + 1)] for _ in range(m + 1)]# 填充二维列表 cfor i in range(1, m + 1):  # 遍历字符串 x 的每个字符for j in range(1, n + 1):  # 遍历字符串 y 的每个字符if x[i - 1] == y[j - 1]:  # 如果 x 的第 i 个字符等于 y 的第 j 个字符# 如果字符匹配,当前最长公共子序列的长度是左上角的值 + 1c[i][j] = c[i - 1][j - 1] + 1else:# 如果字符不匹配,取上方或左方的最大值c[i][j] = max(c[i - 1][j], c[i][j - 1])# 打印二维列表 c 的值(用于调试)for _ in c:print('列表的值是:', _)# 返回最长公共子序列的长度,即 c[m][n]return c[m][n]# print(lcs_length("ABCBDAB", "BDCABA"))  # 4# 列表的值是: [0, 0, 0, 0, 0, 0, 0]
# 列表的值是: [0, 0, 0, 0, 1, 1, 1]
# 列表的值是: [0, 1, 1, 1, 1, 2, 2]
# 列表的值是: [0, 1, 1, 2, 2, 2, 2]
# 列表的值是: [0, 1, 1, 2, 2, 3, 3]
# 列表的值是: [0, 1, 2, 2, 2, 3, 3]
# 列表的值是: [0, 1, 2, 2, 3, 3, 4]
# 列表的值是: [0, 1, 2, 2, 3, 4, 4]def lcs(x: str, y: str) -> Tuple[int, list]:"""计算两个字符串的最长公共子序列 (LCS) 的长度,并生成动态规划表。使用动态规划方法求解两个字符串的最长公共子序列问题,并返回长度以及记录方向的表,用于后续的LCS路径恢复。:param x: 第一个字符串:param y: 第二个字符串:return: 返回一个元组,包含两个元素:- LCS的长度- 动态规划表 b,其中 b[i][j] 表示到达位置 (i, j) 时的方向"""m = len(x)  # 第一个字符串的长度n = len(y)  # 第二个字符串的长度# 创建一个 (m+1) x (n+1) 的二维列表 c,用于存储子问题的解# c[i][j] 表示字符串 x 的前 i 个字符和字符串 y 的前 j 个字符的最长公共子序列的长度c = [[0 for _ in range(n + 1)] for _ in range(m + 1)]# 创建一个 (m+1) x (n+1) 的二维列表 b,用于记录方向# b[i][j] 表示到达位置 (i, j) 时的方向# "←" 表示来自左上方(匹配),# "↑" 表示来自上方(不匹配,向上移动),# "↖" 表示来自左方(不匹配,向左移动)b = [['*' for _ in range(n + 1)] for _ in range(m + 1)]# 填充二维列表 c 和 bfor i in range(1, m + 1):for j in range(1, n + 1):if x[i - 1] == y[j - 1]:  # 如果 x 的第 i 个字符等于 y 的第 j 个字符# 如果字符匹配,当前最长公共子序列的长度是左上角的值 + 1c[i][j] = c[i - 1][j - 1] + 1b[i][j] = "←"  # 方向来自于左上方(匹配)elif c[i - 1][j] > c[i][j - 1]:  # 如果来自上方的值大于来自左方的值# 如果上方的值更大,选择上方的值c[i][j] = c[i - 1][j]b[i][j] = "↑"  # 方向来自于上方(不匹配,向上移动)else:# 如果左方的值更大或相等,选择左方的值c[i][j] = c[i][j - 1]b[i][j] = "↖"  # 方向来自于左方(不匹配,向左移动)# 返回最长公共子序列的长度和方向记录表return c[m][n], bc, b = lcs("ABCBDAB", "BDCABA")
for _ in b:print(_)# ['*', '*', '*', '*', '*', '*', '*']
# ['*', '↖', '↖', '↖', '←', '↖', '←']
# ['*', '←', '↖', '↖', '↖', '←', '↖']
# ['*', '↑', '↖', '←', '↖', '↖', '↖']
# ['*', '←', '↖', '↑', '↖', '←', '↖']
# ['*', '↑', '←', '↖', '↖', '↑', '↖']
# ['*', '↑', '↑', '↖', '←', '↖', '←']
# ['*', '←', '↑', '↖', '↑', '←', '↖']def lcs_traceback(x: str, y: str) -> str:"""根据动态规划表回溯,找出两个字符串的最长公共子序列 (LCS)。使用动态规划表 `b` 来回溯最长公共子序列的路径,并从结果表 `c` 中获取最长公共子序列的字符。最终返回最长公共子序列的字符串。:param x: 第一个字符串:param y: 第二个字符串:return: 返回两个字符串的最长公共子序列(LCS)的字符串表示"""# 调用 lcs 函数获取动态规划表 c 和方向记录表 bc, b = lcs(x, y)i = len(x)  # 初始化 i 为第一个字符串的长度j = len(y)  # 初始化 j 为第二个字符串的长度res = []  # 用于存储回溯得到的 LCS 字符# 根据方向记录表 b 从表的右下角开始回溯到左上角while i > 0 and j > 0:if b[i][j] == "←":# 如果方向来自于左上方(匹配),则当前字符是 LCS 的一部分res.append(x[i - 1])i -= 1  # 移动到前一个字符j -= 1  # 移动到前一个字符elif b[i][j] == "↑":# 如果方向来自于上方,则移动到上方的子问题i -= 1else:  # '↖'# 如果方向来自于左方,则移动到左方的子问题j -= 1# 由于回溯过程中字符是从 LCS 的末尾开始添加的,所以需要反转结果列表return "".join(res[::-1])print(lcs_traceback("ABCBDAB", "BDCABA"))  # BDAB

2 欧几里得算法

在这里插入图片描述
在这里插入图片描述

def gcd(a: int, b: int) -> int:"""递归求解两个数的最大公约数 (GCD)。使用欧几里得算法通过递归的方式计算两个整数的最大公约数。当第二个数 b 为 0 时,最大公约数是第一个数 a。:param a: 第一个整数:param b: 第二个整数:return: 返回 a 和 b 的最大公约数"""if b == 0:return a  # 基本情况:当 b 为 0 时,a 是最大公约数else:# 递归调用:计算 b 和 a % b 的最大公约数return gcd(b, a % b)print(gcd(12, 16))  # 4def gcd2(a: int, b: int) -> int:"""非递归求解两个数的最大公约数 (GCD)。使用欧几里得算法通过迭代的方式计算两个整数的最大公约数。通过不断更新 a 和 b 直到 b 为 0,此时 a 就是最大公约数。:param a: 第一个整数:param b: 第二个整数:return: 返回 a 和 b 的最大公约数"""while b > 0:r = a % b  # 计算 a 除以 b 的余数a = b  # 更新 a 为 bb = r  # 更新 b 为余数return a  # 当 b 为 0 时,a 是最大公约数print(gcd2(12, 16))  # 4

2.1 动态规划之欧几里得算法-分数

class Fraction:def __init__(self, a: int, b: int):"""初始化一个分数对象,并将其化简为最简分数。:param a: 分子:param b: 分母"""self.a = aself.b = b# 计算最大公约数x = self.gcd(a, b)# 将分子和分母除以最大公约数,化简为最简分数self.a /= xself.b /= x@staticmethoddef gcd(a: int, b: int) -> int:"""非递归求解两个数的最大公约数 (GCD)。使用欧几里得算法通过迭代的方式计算两个整数的最大公约数。通过不断更新 a 和 b 直到 b 为 0,此时 a 就是最大公约数。:param a: 第一个整数:param b: 第二个整数:return: 返回 a 和 b 的最大公约数"""while b > 0:r = a % b  # 计算 a 除以 b 的余数a = b  # 更新 a 为 bb = r  # 更新 b 为余数return a  # 当 b 为 0 时,a 是最大公约数def __str__(self) -> str:"""返回分数的字符串表示形式。:return: 返回分数的字符串表示,例如 "3/4""""return f"{int(self.a)}/{int(self.b)}"@staticmethoddef zgs(a: int, b: int) -> int:"""计算两个数的最小公倍数 (Least Common Multiple, LCM)。使用公式 LCM(a, b) = abs(a * b) / GCD(a, b) 来计算最小公倍数。:param a: 第一个整数:param b: 第二个整数:return: 返回 a 和 b 的最小公倍数,类型为整数"""x = Fraction.gcd(a, b)  # 调用静态方法 gcd 计算最大公约数return a * b // x  # 根据公式计算最小公倍数,使用整数除法返回整数结果def __add__(self, other: 'Fraction') -> 'Fraction':# 3/5 + 2/7"""重载加法运算符,实现两个分数相加。通过计算两个分数的最小公倍数来统一分母,并计算新分数的分子。:param self: 第一个分数对象:param other: 第二个分数对象:return: 返回两个分数相加后的结果,作为新的 Fraction 对象"""a = self.a  # 当前分数的分子b = self.b  # 当前分数的分母c = other.a  # 另一个分数的分子d = other.b  # 另一个分数的分母denominator = self.zgs(b, d)  # 计算两个分数分母的最小公倍数numerator = a * denominator // b + c * denominator // d  # 计算新分数的分子,使用整数除法确保结果为整数return Fraction(int(numerator), int(denominator))  # 返回新的 Fraction 对象,表示两个分数相加的结果# f = Fraction(30, 16)
# print(f)  # 输出 15/8a = Fraction(3, 4)
b = Fraction(1, 2)
print(a + b)  # 5/6

3 RSA算法-密码于加密

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于【算法进阶2-动态规划】最长公共子序列、欧几里得算法-分数、RSA算法-密码于加密的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1107785

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

C++从序列容器中删除元素的四种方法

《C++从序列容器中删除元素的四种方法》删除元素的方法在序列容器和关联容器之间是非常不同的,在序列容器中,vector和string是最常用的,但这里也会介绍deque和list以供全面了解,尽管在一... 目录一、简介二、移除给定位置的元素三、移除与某个值相等的元素3.1、序列容器vector、deque

SpringBoot3使用Jasypt实现加密配置文件

《SpringBoot3使用Jasypt实现加密配置文件》这篇文章主要为大家详细介绍了SpringBoot3如何使用Jasypt实现加密配置文件功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编... 目录一. 使用步骤1. 添加依赖2.配置加密密码3. 加密敏感信息4. 将加密信息存储到配置文件中5

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

SpringSecurity 认证、注销、权限控制功能(注销、记住密码、自定义登入页)

《SpringSecurity认证、注销、权限控制功能(注销、记住密码、自定义登入页)》SpringSecurity是一个强大的Java框架,用于保护应用程序的安全性,它提供了一套全面的安全解决方案... 目录简介认识Spring Security“认证”(Authentication)“授权” (Auth

Java实现MD5加密的四种方式

《Java实现MD5加密的四种方式》MD5是一种广泛使用的哈希算法,其输出结果是一个128位的二进制数,通常以32位十六进制数的形式表示,MD5的底层实现涉及多个复杂的步骤和算法,本文给大家介绍了Ja... 目录MD5介绍Java 中实现 MD5 加密方式方法一:使用 MessageDigest方法二:使用

mybatis-plus 实现查询表名动态修改的示例代码

《mybatis-plus实现查询表名动态修改的示例代码》通过MyBatis-Plus实现表名的动态替换,根据配置或入参选择不同的表,本文主要介绍了mybatis-plus实现查询表名动态修改的示... 目录实现数据库初始化依赖包配置读取类设置 myBATis-plus 插件测试通过 mybatis-plu

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.