《概率机器人》速度运动模型gmapping中代码解析

2024-08-25 06:32

本文主要是介绍《概率机器人》速度运动模型gmapping中代码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一个刚性移动机器人的构型通常用6个变量来描述:他的三维直角坐标系,以及相对外部坐标系的三个欧拉角(RPY 横滚 ,俯仰,偏航),所以那么在平面环境中一般用三个变量既可以描述,称之为位姿。
所以一般而平面上机器人的位姿信息也就是机器人的二维平面坐标(x,y)及其方位角 θ ,用这个向量来表示:

xyθ

没有方向的位姿就叫做位置(Location).那我们知道概率运动学中的条件密度是: p(xt|ut,xt1)
我们都是知道的 xt xt1 都是机器人的位姿, ut 是运动控制,所以这个模型描述了对 xt1 执行运动控制 ut 后,机器人索取得的运动学状态的后验分布。

速度运动模型是通过两个速度:平移速度和旋转速度来控制机器人
所以控制 ut=(vtwt)
规定逆时针旋转角速度为正,向前运动线速度为正。以下直接给出
motion_model_velocity的伪代码

这里写图片描述

其中第二行最难理解,虽然我是自我理解了 但是不知道对还是不对,所以还是不写了,上伪代码中的具体含义:初始位姿 xt1=(x y θ)T 控制 ut=(v w)T 和假想的后继位姿 xt=(x y θ)T 作为输入,控制以 Δt 执行,参数 α1 α6 是机器人的运动误差参数。

对于一些参数的设置:
Motion Model Parameters (all standard deviations of a gaussian noise model) 运动模型的参数 高斯噪声模型的所有标准偏差
- “~/srr” [double] linear noise component (x and y) 线速度的噪声分量
- “~/stt” [double] angular noise component (theta) 角速度的噪声分量
- “~/srt” [double] linear -> angular noise component 线速度与角速度之间的噪声分量
- “~/str” [double] angular -> linear noise component 角速度与线速度的噪声分量

      <param name="srr" value="0.1"/><param name="srt" value="0.2"/><param name="str" value="0.1"/><param name="stt" value="0.2"/>

误差的标准方差与给定速度成正比,指定的误差参数,建立了机器人的准确性模型,一个机器人越不精确,这些参数就会越大。
所以以上是关于基于速度信息计算 p(xt|ut,xt1) 的算法。

接下来就是要从运动模型中采样,粒子滤波并不计任意 xt,utxt1 的后验。采样时,给定 ut xt1 是为了根据从运动模型 p(xt|ut,xt1) 产生一个随机的 xt ,接下来就是根据运动模型的采样算法:
这里写图片描述

此算法的输入是 xt1 ut 根据之前的分布 p(xt|ut,xt1) 产生一个随机位姿 xt ,第2-4行是有运动学模型的误差参数来产生的新的(第5-7行)样本位姿,具体的代码如下实现:

//这里有两个drawFromMotion函数可以用于函数的重载
//参数是   输出位姿  线速度  角速度   这其中是要根据《速度运动模型》写函数   具体的理论中文版《概率机器人》P90
OrientedPoint 
MotionModel::drawFromMotion (const OrientedPoint& p, double linearMove, double angularMove) const{OrientedPoint n(p);//用于存储位姿double lm=linearMove  + fabs( linearMove ) * sampleGaussian( srr ) + fabs( angularMove ) * sampleGaussian( str ); //加了噪声的线速度对应第2行double am=angularMove + fabs( linearMove ) * sampleGaussian( srt ) + fabs( angularMove ) * sampleGaussian( stt ); //加了噪声的角速度n.x+=lm*cos(n.theta+.5*am);n.y+=lm*sin(n.theta+.5*am);n.theta+=am;n.theta=atan2(sin(n.theta), cos(n.theta));return n;
}

以上是主要的根据运动模型的一个代码,很明显里面有一个函数sampleGaussian()是十分重要的。sampleGaussian( b2 )是产生一个方差为 b2 的以0为中心的分布的一个随机样本。可以通过一下的算法实现

这里写图片描述
这个算法是从均值为0 方差为 b2 的近似正态分布和三角分布中采样的算法,其中函数 rand(x,y) 是在 [b,b] 中均匀分布的一个伪随机数的产生器。
那么程序中出现 fabs( linearMove ) * sampleGaussian( srr ) 意思就是产生一个峰值为fabs( linearMove ) 方差为srr的随机样本。这也是为什么这句话中 n.x+=lm*cos(n.theta+.5*am); 为什么乘以0.5的原因。

下图给出了采样程序的结果
不同的误差参数从速度运动模型中采样的结果
对比知道第一副是具有中等误差的采样结果,第二幅图是具有较小的角度误差和较大的平移误差的采样结果,第三图是具有较大的角度误差,较小的平移误差的结果。

*这是我个人的理解,可能有一些偏差,或者错误,有错误还请指正,当然不喜勿喷

这篇关于《概率机器人》速度运动模型gmapping中代码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1104805

相关文章

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

spring中的@MapperScan注解属性解析

《spring中的@MapperScan注解属性解析》@MapperScan是Spring集成MyBatis时自动扫描Mapper接口的注解,简化配置并支持多数据源,通过属性控制扫描路径和过滤条件,利... 目录一、核心功能与作用二、注解属性解析三、底层实现原理四、使用场景与最佳实践五、注意事项与常见问题六

MySQL进行数据库审计的详细步骤和示例代码

《MySQL进行数据库审计的详细步骤和示例代码》数据库审计通过触发器、内置功能及第三方工具记录和监控数据库活动,确保安全、完整与合规,Java代码实现自动化日志记录,整合分析系统提升监控效率,本文给大... 目录一、数据库审计的基本概念二、使用触发器进行数据库审计1. 创建审计表2. 创建触发器三、Java

nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析(结合应用场景)

《nginx-t、nginx-sstop和nginx-sreload命令的详细解析(结合应用场景)》本文解析Nginx的-t、-sstop、-sreload命令,分别用于配置语法检... 以下是关于 nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析,结合实际应

MyBatis中$与#的区别解析

《MyBatis中$与#的区别解析》文章浏览阅读314次,点赞4次,收藏6次。MyBatis使用#{}作为参数占位符时,会创建预处理语句(PreparedStatement),并将参数值作为预处理语句... 目录一、介绍二、sql注入风险实例一、介绍#(井号):MyBATis使用#{}作为参数占位符时,会

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示