《概率机器人》速度运动模型gmapping中代码解析

2024-08-25 06:32

本文主要是介绍《概率机器人》速度运动模型gmapping中代码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一个刚性移动机器人的构型通常用6个变量来描述:他的三维直角坐标系,以及相对外部坐标系的三个欧拉角(RPY 横滚 ,俯仰,偏航),所以那么在平面环境中一般用三个变量既可以描述,称之为位姿。
所以一般而平面上机器人的位姿信息也就是机器人的二维平面坐标(x,y)及其方位角 θ ,用这个向量来表示:

xyθ

没有方向的位姿就叫做位置(Location).那我们知道概率运动学中的条件密度是: p(xt|ut,xt1)
我们都是知道的 xt xt1 都是机器人的位姿, ut 是运动控制,所以这个模型描述了对 xt1 执行运动控制 ut 后,机器人索取得的运动学状态的后验分布。

速度运动模型是通过两个速度:平移速度和旋转速度来控制机器人
所以控制 ut=(vtwt)
规定逆时针旋转角速度为正,向前运动线速度为正。以下直接给出
motion_model_velocity的伪代码

这里写图片描述

其中第二行最难理解,虽然我是自我理解了 但是不知道对还是不对,所以还是不写了,上伪代码中的具体含义:初始位姿 xt1=(x y θ)T 控制 ut=(v w)T 和假想的后继位姿 xt=(x y θ)T 作为输入,控制以 Δt 执行,参数 α1 α6 是机器人的运动误差参数。

对于一些参数的设置:
Motion Model Parameters (all standard deviations of a gaussian noise model) 运动模型的参数 高斯噪声模型的所有标准偏差
- “~/srr” [double] linear noise component (x and y) 线速度的噪声分量
- “~/stt” [double] angular noise component (theta) 角速度的噪声分量
- “~/srt” [double] linear -> angular noise component 线速度与角速度之间的噪声分量
- “~/str” [double] angular -> linear noise component 角速度与线速度的噪声分量

      <param name="srr" value="0.1"/><param name="srt" value="0.2"/><param name="str" value="0.1"/><param name="stt" value="0.2"/>

误差的标准方差与给定速度成正比,指定的误差参数,建立了机器人的准确性模型,一个机器人越不精确,这些参数就会越大。
所以以上是关于基于速度信息计算 p(xt|ut,xt1) 的算法。

接下来就是要从运动模型中采样,粒子滤波并不计任意 xt,utxt1 的后验。采样时,给定 ut xt1 是为了根据从运动模型 p(xt|ut,xt1) 产生一个随机的 xt ,接下来就是根据运动模型的采样算法:
这里写图片描述

此算法的输入是 xt1 ut 根据之前的分布 p(xt|ut,xt1) 产生一个随机位姿 xt ,第2-4行是有运动学模型的误差参数来产生的新的(第5-7行)样本位姿,具体的代码如下实现:

//这里有两个drawFromMotion函数可以用于函数的重载
//参数是   输出位姿  线速度  角速度   这其中是要根据《速度运动模型》写函数   具体的理论中文版《概率机器人》P90
OrientedPoint 
MotionModel::drawFromMotion (const OrientedPoint& p, double linearMove, double angularMove) const{OrientedPoint n(p);//用于存储位姿double lm=linearMove  + fabs( linearMove ) * sampleGaussian( srr ) + fabs( angularMove ) * sampleGaussian( str ); //加了噪声的线速度对应第2行double am=angularMove + fabs( linearMove ) * sampleGaussian( srt ) + fabs( angularMove ) * sampleGaussian( stt ); //加了噪声的角速度n.x+=lm*cos(n.theta+.5*am);n.y+=lm*sin(n.theta+.5*am);n.theta+=am;n.theta=atan2(sin(n.theta), cos(n.theta));return n;
}

以上是主要的根据运动模型的一个代码,很明显里面有一个函数sampleGaussian()是十分重要的。sampleGaussian( b2 )是产生一个方差为 b2 的以0为中心的分布的一个随机样本。可以通过一下的算法实现

这里写图片描述
这个算法是从均值为0 方差为 b2 的近似正态分布和三角分布中采样的算法,其中函数 rand(x,y) 是在 [b,b] 中均匀分布的一个伪随机数的产生器。
那么程序中出现 fabs( linearMove ) * sampleGaussian( srr ) 意思就是产生一个峰值为fabs( linearMove ) 方差为srr的随机样本。这也是为什么这句话中 n.x+=lm*cos(n.theta+.5*am); 为什么乘以0.5的原因。

下图给出了采样程序的结果
不同的误差参数从速度运动模型中采样的结果
对比知道第一副是具有中等误差的采样结果,第二幅图是具有较小的角度误差和较大的平移误差的采样结果,第三图是具有较大的角度误差,较小的平移误差的结果。

*这是我个人的理解,可能有一些偏差,或者错误,有错误还请指正,当然不喜勿喷

这篇关于《概率机器人》速度运动模型gmapping中代码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1104805

相关文章

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Springboot @Autowired和@Resource的区别解析

《Springboot@Autowired和@Resource的区别解析》@Resource是JDK提供的注解,只是Spring在实现上提供了这个注解的功能支持,本文给大家介绍Springboot@... 目录【一】定义【1】@Autowired【2】@Resource【二】区别【1】包含的属性不同【2】@

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN