《概率机器人》速度运动模型gmapping中代码解析

2024-08-25 06:32

本文主要是介绍《概率机器人》速度运动模型gmapping中代码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一个刚性移动机器人的构型通常用6个变量来描述:他的三维直角坐标系,以及相对外部坐标系的三个欧拉角(RPY 横滚 ,俯仰,偏航),所以那么在平面环境中一般用三个变量既可以描述,称之为位姿。
所以一般而平面上机器人的位姿信息也就是机器人的二维平面坐标(x,y)及其方位角 θ ,用这个向量来表示:

xyθ

没有方向的位姿就叫做位置(Location).那我们知道概率运动学中的条件密度是: p(xt|ut,xt1)
我们都是知道的 xt xt1 都是机器人的位姿, ut 是运动控制,所以这个模型描述了对 xt1 执行运动控制 ut 后,机器人索取得的运动学状态的后验分布。

速度运动模型是通过两个速度:平移速度和旋转速度来控制机器人
所以控制 ut=(vtwt)
规定逆时针旋转角速度为正,向前运动线速度为正。以下直接给出
motion_model_velocity的伪代码

这里写图片描述

其中第二行最难理解,虽然我是自我理解了 但是不知道对还是不对,所以还是不写了,上伪代码中的具体含义:初始位姿 xt1=(x y θ)T 控制 ut=(v w)T 和假想的后继位姿 xt=(x y θ)T 作为输入,控制以 Δt 执行,参数 α1 α6 是机器人的运动误差参数。

对于一些参数的设置:
Motion Model Parameters (all standard deviations of a gaussian noise model) 运动模型的参数 高斯噪声模型的所有标准偏差
- “~/srr” [double] linear noise component (x and y) 线速度的噪声分量
- “~/stt” [double] angular noise component (theta) 角速度的噪声分量
- “~/srt” [double] linear -> angular noise component 线速度与角速度之间的噪声分量
- “~/str” [double] angular -> linear noise component 角速度与线速度的噪声分量

      <param name="srr" value="0.1"/><param name="srt" value="0.2"/><param name="str" value="0.1"/><param name="stt" value="0.2"/>

误差的标准方差与给定速度成正比,指定的误差参数,建立了机器人的准确性模型,一个机器人越不精确,这些参数就会越大。
所以以上是关于基于速度信息计算 p(xt|ut,xt1) 的算法。

接下来就是要从运动模型中采样,粒子滤波并不计任意 xt,utxt1 的后验。采样时,给定 ut xt1 是为了根据从运动模型 p(xt|ut,xt1) 产生一个随机的 xt ,接下来就是根据运动模型的采样算法:
这里写图片描述

此算法的输入是 xt1 ut 根据之前的分布 p(xt|ut,xt1) 产生一个随机位姿 xt ,第2-4行是有运动学模型的误差参数来产生的新的(第5-7行)样本位姿,具体的代码如下实现:

//这里有两个drawFromMotion函数可以用于函数的重载
//参数是   输出位姿  线速度  角速度   这其中是要根据《速度运动模型》写函数   具体的理论中文版《概率机器人》P90
OrientedPoint 
MotionModel::drawFromMotion (const OrientedPoint& p, double linearMove, double angularMove) const{OrientedPoint n(p);//用于存储位姿double lm=linearMove  + fabs( linearMove ) * sampleGaussian( srr ) + fabs( angularMove ) * sampleGaussian( str ); //加了噪声的线速度对应第2行double am=angularMove + fabs( linearMove ) * sampleGaussian( srt ) + fabs( angularMove ) * sampleGaussian( stt ); //加了噪声的角速度n.x+=lm*cos(n.theta+.5*am);n.y+=lm*sin(n.theta+.5*am);n.theta+=am;n.theta=atan2(sin(n.theta), cos(n.theta));return n;
}

以上是主要的根据运动模型的一个代码,很明显里面有一个函数sampleGaussian()是十分重要的。sampleGaussian( b2 )是产生一个方差为 b2 的以0为中心的分布的一个随机样本。可以通过一下的算法实现

这里写图片描述
这个算法是从均值为0 方差为 b2 的近似正态分布和三角分布中采样的算法,其中函数 rand(x,y) 是在 [b,b] 中均匀分布的一个伪随机数的产生器。
那么程序中出现 fabs( linearMove ) * sampleGaussian( srr ) 意思就是产生一个峰值为fabs( linearMove ) 方差为srr的随机样本。这也是为什么这句话中 n.x+=lm*cos(n.theta+.5*am); 为什么乘以0.5的原因。

下图给出了采样程序的结果
不同的误差参数从速度运动模型中采样的结果
对比知道第一副是具有中等误差的采样结果,第二幅图是具有较小的角度误差和较大的平移误差的采样结果,第三图是具有较大的角度误差,较小的平移误差的结果。

*这是我个人的理解,可能有一些偏差,或者错误,有错误还请指正,当然不喜勿喷

这篇关于《概率机器人》速度运动模型gmapping中代码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1104805

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}