《概率机器人》速度运动模型gmapping中代码解析

2024-08-25 06:32

本文主要是介绍《概率机器人》速度运动模型gmapping中代码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一个刚性移动机器人的构型通常用6个变量来描述:他的三维直角坐标系,以及相对外部坐标系的三个欧拉角(RPY 横滚 ,俯仰,偏航),所以那么在平面环境中一般用三个变量既可以描述,称之为位姿。
所以一般而平面上机器人的位姿信息也就是机器人的二维平面坐标(x,y)及其方位角 θ ,用这个向量来表示:

xyθ

没有方向的位姿就叫做位置(Location).那我们知道概率运动学中的条件密度是: p(xt|ut,xt1)
我们都是知道的 xt xt1 都是机器人的位姿, ut 是运动控制,所以这个模型描述了对 xt1 执行运动控制 ut 后,机器人索取得的运动学状态的后验分布。

速度运动模型是通过两个速度:平移速度和旋转速度来控制机器人
所以控制 ut=(vtwt)
规定逆时针旋转角速度为正,向前运动线速度为正。以下直接给出
motion_model_velocity的伪代码

这里写图片描述

其中第二行最难理解,虽然我是自我理解了 但是不知道对还是不对,所以还是不写了,上伪代码中的具体含义:初始位姿 xt1=(x y θ)T 控制 ut=(v w)T 和假想的后继位姿 xt=(x y θ)T 作为输入,控制以 Δt 执行,参数 α1 α6 是机器人的运动误差参数。

对于一些参数的设置:
Motion Model Parameters (all standard deviations of a gaussian noise model) 运动模型的参数 高斯噪声模型的所有标准偏差
- “~/srr” [double] linear noise component (x and y) 线速度的噪声分量
- “~/stt” [double] angular noise component (theta) 角速度的噪声分量
- “~/srt” [double] linear -> angular noise component 线速度与角速度之间的噪声分量
- “~/str” [double] angular -> linear noise component 角速度与线速度的噪声分量

      <param name="srr" value="0.1"/><param name="srt" value="0.2"/><param name="str" value="0.1"/><param name="stt" value="0.2"/>

误差的标准方差与给定速度成正比,指定的误差参数,建立了机器人的准确性模型,一个机器人越不精确,这些参数就会越大。
所以以上是关于基于速度信息计算 p(xt|ut,xt1) 的算法。

接下来就是要从运动模型中采样,粒子滤波并不计任意 xt,utxt1 的后验。采样时,给定 ut xt1 是为了根据从运动模型 p(xt|ut,xt1) 产生一个随机的 xt ,接下来就是根据运动模型的采样算法:
这里写图片描述

此算法的输入是 xt1 ut 根据之前的分布 p(xt|ut,xt1) 产生一个随机位姿 xt ,第2-4行是有运动学模型的误差参数来产生的新的(第5-7行)样本位姿,具体的代码如下实现:

//这里有两个drawFromMotion函数可以用于函数的重载
//参数是   输出位姿  线速度  角速度   这其中是要根据《速度运动模型》写函数   具体的理论中文版《概率机器人》P90
OrientedPoint 
MotionModel::drawFromMotion (const OrientedPoint& p, double linearMove, double angularMove) const{OrientedPoint n(p);//用于存储位姿double lm=linearMove  + fabs( linearMove ) * sampleGaussian( srr ) + fabs( angularMove ) * sampleGaussian( str ); //加了噪声的线速度对应第2行double am=angularMove + fabs( linearMove ) * sampleGaussian( srt ) + fabs( angularMove ) * sampleGaussian( stt ); //加了噪声的角速度n.x+=lm*cos(n.theta+.5*am);n.y+=lm*sin(n.theta+.5*am);n.theta+=am;n.theta=atan2(sin(n.theta), cos(n.theta));return n;
}

以上是主要的根据运动模型的一个代码,很明显里面有一个函数sampleGaussian()是十分重要的。sampleGaussian( b2 )是产生一个方差为 b2 的以0为中心的分布的一个随机样本。可以通过一下的算法实现

这里写图片描述
这个算法是从均值为0 方差为 b2 的近似正态分布和三角分布中采样的算法,其中函数 rand(x,y) 是在 [b,b] 中均匀分布的一个伪随机数的产生器。
那么程序中出现 fabs( linearMove ) * sampleGaussian( srr ) 意思就是产生一个峰值为fabs( linearMove ) 方差为srr的随机样本。这也是为什么这句话中 n.x+=lm*cos(n.theta+.5*am); 为什么乘以0.5的原因。

下图给出了采样程序的结果
不同的误差参数从速度运动模型中采样的结果
对比知道第一副是具有中等误差的采样结果,第二幅图是具有较小的角度误差和较大的平移误差的采样结果,第三图是具有较大的角度误差,较小的平移误差的结果。

*这是我个人的理解,可能有一些偏差,或者错误,有错误还请指正,当然不喜勿喷

这篇关于《概率机器人》速度运动模型gmapping中代码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1104805

相关文章

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决