分享一个基于文本挖掘的微博舆情分析系统Python网络舆情监控系统Flask爬虫项目大数据(源码、调试、LW、开题、PPT)

本文主要是介绍分享一个基于文本挖掘的微博舆情分析系统Python网络舆情监控系统Flask爬虫项目大数据(源码、调试、LW、开题、PPT),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

💕💕作者:计算机源码社
💕💕个人简介:本人 八年开发经验,擅长Java、Python、PHP、.NET、Node.js、Android、微信小程序、爬虫、大数据、机器学习等,大家有这一块的问题可以一起交流!
💕💕学习资料、程序开发、技术解答、文档报告
💕💕如需要源码,可以扫取文章下方二维码联系咨询

💕💕Java项目
💕💕微信小程序项目
💕💕Android项目
💕💕Python项目
💕💕PHP项目
💕💕ASP.NET项目
💕💕Node.js项目
💕💕选题推荐

项目实战|基于python文本挖掘的网络舆情分析爬虫毕设源码

文章目录

  • 1、选题背景
  • 2、研究目的和意义
  • 3、系统功能设计
  • 4、系统页面设计
  • 5、参考文献
  • 6、核心代码

1、选题背景

  随着社交媒体的迅速发展,微博作为中国最具影响力的社交平台之一,成为了用户表达观点、分享信息的重要渠道。然而,海量的微博数据也使得舆情的监控和分析变得极为复杂。传统的舆情监控方式往往依赖人工,效率低且容易错失重要信息。借助文本挖掘技术,可以自动化地处理和分析微博中的海量数据,快速捕捉公众情绪的变化趋势,识别潜在的舆情热点。Python、Flask等技术的成熟应用为开发高效的舆情监控系统提供了技术保障,通过这些技术手段可以实现对微博数据的全面采集和深度分析。

2、研究目的和意义

  本系统的开发旨在构建一个高效的微博舆情分析与监控平台,帮助企业、政府及相关机构实时了解社交媒体上的舆情动态。通过Scrapy爬虫技术自动化地采集微博中与特定舆情相关的数据,并将其存储到MySQL数据库中,以便后续的数据处理和分析。系统还集成了大屏可视化分析功能,通过Echarts展示微博数据的多维度统计信息,如评论、分享、点赞数量以及发布城市和舆情数量等,帮助用户直观地掌握舆情分布和发展态势,为及时应对突发事件和优化决策提供数据支持。

  开发基于文本挖掘的微博舆情分析系统不仅能够提高舆情监控的自动化程度,还能增强分析的准确性和实时性。通过引入Python、Flask和Echarts等技术,系统能够实时处理和展示微博数据,为用户提供全面、清晰的舆情信息。这对于政府和企业在应对突发事件、维护品牌形象、了解公众意见等方面具有重要意义。同时,系统的可扩展性和灵活性使得其能够适应不同场景下的舆情分析需求,提升了舆情监控的智能化水平,促进了信息时代背景下的社会稳定与企业发展。

3、系统功能设计

本文致力于构建一个基于文本挖掘的微博舆情分析系统,通过全面的数据采集、处理、分析与可视化展示,实现对微博平台上网络舆情的实时监控与分析。研究首先通过Scrapy爬虫技术自动化地获取微博中与舆情相关的数据,包括微博内容、评论、分享、点赞数量以及发布地点等多维度信息。爬取的数据经过数据清洗和处理,去除冗余信息和噪声,以保证数据的质量和分析的准确性。处理后的数据存储在MySQL数据库中,便于高效的管理和查询,为后续的分析打下坚实的基础。

研究将重点放在数据分析与可视化展示上。基于文本挖掘技术,对微博数据进行深入分析,提取出舆情的核心内容和趋势。通过Echarts框架,系统将数据以大屏可视化的方式展示,涵盖评论数量统计、分享数量统计、点赞数量统计、发布城市统计和舆情数量统计等多项关键指标。通过这些可视化分析,用户能够直观地掌握微博舆情的分布情况和变化趋势,为舆情的及时应对提供数据支持。

研究还探讨了如何通过Python和Flask框架搭建一个功能全面的Web网站。该网站不仅实现了用户登录与管理功能,还提供了网络舆情数据的管理和可视化分析模块,用户可以通过Web界面进行舆情数据的查看和分析。系统设计中还考虑了用户体验和系统性能的优化,确保系统的易用性和高效性。本研究旨在通过多种技术的综合应用,构建一个高效、可靠的微博舆情分析系统,提升舆情监控的智能化水平。

4、系统页面设计

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
如需要源码,可以扫取文章下方二维码联系咨询

5、参考文献

[1]杨春,王秋怡,林伊莼,等.浅谈基于区块链的校园舆情分析系统[J].中国设备工程,2024,(16):254-256.
[2]郑登元.基于朴素贝叶斯的网络舆情话语生态分析[J].电脑与信息技术,2024,32(04):46-50.DOI:10.19414/j.cnki.1005-1228.2024.04.032.
[3]唐雨霞,左尚扬,易业曦,等.一套基于数据挖掘技术的网络舆情预警系统开发研究[J].电脑知识与技术,2024,20(21):67-70.DOI:10.14004/j.cnki.ckt.2024.1088.
[4]侯颖.基于注意力机制的文本细粒度情感分析研究[D].山东师范大学,2024. DOI:10.27280/d.cnki.gsdsu.2024.001006.
[5]陈冲,谭睿璞,张文德,等.基于中智数的突发事件网络舆情辅助决策方法研究[J].中国安全生产科学技术,2024,20(05):50-56.
[6]郑锐斌,贺丹,王凯,等.深度学习技术在高校网络舆情分析中的应用[J].福建电脑,2024,40(05):21-26.DOI:10.16707/j.cnki.fjpc.2024.05.004.
[7]蔡增玉,韩洋,张建伟,等.基于SnowNLP的微博网络舆情分析系统[J].科学技术与工程,2024,24(13):5457-5464.
[8]赵学志,范梦瑶,顾玥琪,等.基于微博数据的江苏大丰海域5.0级地震舆情分析与有感范围提取[J].科技与创新,2024,(09):133-135.DOI:10.15913/j.cnki.kjycx.2024.09.040.
[9]李艳.基于BERT和深度学习的网络舆情情感分析[J].信息记录材料,2024,25(05):100-102.DOI:10.16009/j.cnki.cn13-1295/tq.2024.05.047.
[10]唐锦源.人工智能在网络舆情分析中的应用研究[J].信息记录材料,2024,25(05):112-114.DOI:10.16009/j.cnki.cn13-1295/tq.2024.05.051.
[11]李敏,项朝辉.基于微博短文本的ChatGPT话题舆情分析[J].电脑编程技巧与维护,2024,(04):88-91.DOI:10.16184/j.cnki.comprg.2024.04.032.
[12]宋钰,牛紫琳.元宇宙是颠覆还是噱头?——基于文献计量与质性方法校准的舆情追踪[J/OL].图书馆论坛,1-11[2024-08-24].http://kns.cnki.net/kcms/detail/44.1306.G2.20240408.1846.002.html.
[13]宝日彤,孙海春.基于滑动窗口主题差异值的舆情反转预警研究[J/OL].数据分析与知识发现,1-12[2024-08-24].http://kns.cnki.net/kcms/detail/10.1478.G2.20240409.1620.004.html.
[14]李锦辉,刘继.基于知识蒸馏模型的文本情感分析[J].软件工程,2024,27(04):27-32.DOI:10.19644/j.cnki.issn2096-1472.2024.004.006.
[15]王健,杨柳,李雪松,等.ChatGPT网络舆情特征多维度演化分析[J].情报杂志,2024,43(07):138-145.
[16]代青松,李泽华.基于大数据技术网络舆情分析系统[J].电脑编程技巧与维护,2024,(03):72-75.DOI:10.16184/j.cnki.comprg.2024.03.025.
[17]何西远,张岳,张秉文.基于分布式爬虫的微博舆情监督与情感分析系统设计[J].现代信息科技,2024,8(05):111-114+119.DOI:10.19850/j.cnki.2096-4706.2024.05.024.
[18]王龙军,王晶,李光华,等.基于文本挖掘的图书馆舆情情感分析[J].电脑与电信,2024,(03):13-16.DOI:10.15966/j.cnki.dnydx.2024.03.020.
[19]梁昕,刘天颖.自动化行政裁量中算法风险感知的特征与演化研究——基于网络舆情的大数据分析[J].公共行政评论,2024,17(01):45-65+197.
[20]韦芬.基于并行计算的网络舆情数据分析方法研究[J].电子设计工程,2024,32(02):31-35.DOI:10.14022/j.issn1674-6236.2024.02.007.

6、核心代码

# # -*- coding: utf-8 -*-# 数据爬取文件import scrapy
import pymysql
import pymssql
from ..items import WangluoyuqingItem
import time
from datetime import datetime,timedelta
import datetime as formattime
import re
import random
import platform
import json
import os
import urllib
from urllib.parse import urlparse
import requests
import emoji
import numpy as np
import pandas as pd
from sqlalchemy import create_engine
from selenium.webdriver import ChromeOptions, ActionChains
from scrapy.http import TextResponse
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.wait import WebDriverWait
# 网络舆情
class WangluoyuqingSpider(scrapy.Spider):name = 'wangluoyuqingSpider'spiderUrl = 'https://m.weibo.cn/api/container/getIndex?containerid=100103type%3D1%26q%3D%E7%BD%91%E7%BB%9C%E8%88%86%E6%83%85&_T_WM=57111142162&v_p=42&page_type=searchall'start_urls = spiderUrl.split(";")protocol = ''hostname = ''realtime = Falseheaders = {'Referer':'https://m.weibo.cn/search?containerid=100103type%3D1%26q%3D%E7%BD%91%E7%BB%9C%E8%88%86%E6%83%85&_T_WM=57111142162&v_p=42',
'Cookie':'用自己的Cookie'}def __init__(self,realtime=False,*args, **kwargs):super().__init__(*args, **kwargs)self.realtime = realtime=='true'def start_requests(self):plat = platform.system().lower()if not self.realtime and (plat == 'linux' or plat == 'windows'):connect = self.db_connect()cursor = connect.cursor()if self.table_exists(cursor, '792099hc_wangluoyuqing') == 1:cursor.close()connect.close()self.temp_data()returnpageNum = 1 + 1for url in self.start_urls:if '{}' in url:for page in range(1, pageNum):next_link = url.format(page)yield scrapy.Request(url=next_link,headers=self.headers,callback=self.parse)else:yield scrapy.Request(url=url,headers=self.headers,callback=self.parse)# 列表解析def parse(self, response):_url = urlparse(self.spiderUrl)self.protocol = _url.schemeself.hostname = _url.netlocplat = platform.system().lower()if not self.realtime and (plat == 'linux' or plat == 'windows'):connect = self.db_connect()cursor = connect.cursor()if self.table_exists(cursor, '792099hc_wangluoyuqing') == 1:cursor.close()connect.close()self.temp_data()returndata = json.loads(response.body)try:list = data["data"]["cards"]except:passfor item in list:fields = WangluoyuqingItem()try:fields["author"] = emoji.demojize(self.remove_html(str( item["card_group"][0]["mblog"]["user"]["screen_name"] )))except:passtry:fields["text"] = emoji.demojize(self.remove_html(str( item["card_group"][0]["mblog"]["text"] )))except:passtry:fields["bozhuinfo"] = emoji.demojize(self.remove_html(str( item["card_group"][0]["mblog"]["user"]["description"] )))except:passtry:fields["comments"] = int( item["card_group"][0]["mblog"]["comments_count"])except:passtry:fields["attitudes"] = int( item["card_group"][0]["mblog"]["attitudes_count"])except:passtry:fields["reposts"] = int( item["card_group"][0]["mblog"]["reposts_count"])except:passtry:fields["city"] = emoji.demojize(self.remove_html(str( item["card_group"][0]["mblog"]["status_city"] )))except:passtry:fields["detailurl"] = emoji.demojize(self.remove_html(str( item["card_group"][0]["scheme"] )))except:passyield fields# 详情解析def detail_parse(self, response):fields = response.meta['fields']return fields# 数据清洗def pandas_filter(self):engine = create_engine('mysql+pymysql://root:123456@localhost/spider792099hc?charset=UTF8MB4')df = pd.read_sql('select * from wangluoyuqing limit 50', con = engine)# 重复数据过滤df.duplicated()df.drop_duplicates()#空数据过滤df.isnull()df.dropna()# 填充空数据df.fillna(value = '暂无')# 异常值过滤# 滤出 大于800 和 小于 100 的a = np.random.randint(0, 1000, size = 200)cond = (a<=800) & (a>=100)a[cond]# 过滤正态分布的异常值b = np.random.randn(100000)# 3σ过滤异常值,σ即是标准差cond = np.abs(b) > 3 * 1b[cond]# 正态分布数据df2 = pd.DataFrame(data = np.random.randn(10000,3))# 3σ过滤异常值,σ即是标准差cond = (df2 > 3*df2.std()).any(axis = 1)# 不满⾜条件的⾏索引index = df2[cond].index# 根据⾏索引,进⾏数据删除df2.drop(labels=index,axis = 0)# 去除多余html标签def remove_html(self, html):if html == None:return ''pattern = re.compile(r'<[^>]+>', re.S)return pattern.sub('', html).strip()# 数据库连接def db_connect(self):type = self.settings.get('TYPE', 'mysql')host = self.settings.get('HOST', 'localhost')port = int(self.settings.get('PORT', 3306))user = self.settings.get('USER', 'root')password = self.settings.get('PASSWORD', '123456')try:database = self.databaseNameexcept:database = self.settings.get('DATABASE', '')if type == 'mysql':connect = pymysql.connect(host=host, port=port, db=database, user=user, passwd=password, charset='utf8')else:connect = pymssql.connect(host=host, user=user, password=password, database=database)return connect# 断表是否存在def table_exists(self, cursor, table_name):cursor.execute("show tables;")tables = [cursor.fetchall()]table_list = re.findall('(\'.*?\')',str(tables))table_list = [re.sub("'",'',each) for each in table_list]if table_name in table_list:return 1else:return 0# 数据缓存源def temp_data(self):connect = self.db_connect()cursor = connect.cursor()sql = '''insert into `wangluoyuqing`(id,author,text,bozhuinfo,comments,attitudes,reposts,city,detailurl)selectid,author,text,bozhuinfo,comments,attitudes,reposts,city,detailurlfrom `792099hc_wangluoyuqing`where(not exists (selectid,author,text,bozhuinfo,comments,attitudes,reposts,city,detailurlfrom `wangluoyuqing` where`wangluoyuqing`.id=`792099hc_wangluoyuqing`.id))order by rand()limit 50;'''cursor.execute(sql)connect.commit()connect.close()

💕💕作者:计算机源码社
💕💕个人简介:本人 八年开发经验,擅长Java、Python、PHP、.NET、Node.js、Android、微信小程序、爬虫、大数据、机器学习等,大家有这一块的问题可以一起交流!
💕💕学习资料、程序开发、技术解答、文档报告
💕💕如需要源码,可以扫取文章下方二维码联系咨询

这篇关于分享一个基于文本挖掘的微博舆情分析系统Python网络舆情监控系统Flask爬虫项目大数据(源码、调试、LW、开题、PPT)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1103161

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

流媒体平台/视频监控/安防视频汇聚EasyCVR播放暂停后视频画面黑屏是什么原因?

视频智能分析/视频监控/安防监控综合管理系统EasyCVR视频汇聚融合平台,是TSINGSEE青犀视频垂直深耕音视频流媒体技术、AI智能技术领域的杰出成果。该平台以其强大的视频处理、汇聚与融合能力,在构建全栈视频监控系统中展现出了独特的优势。视频监控管理系统EasyCVR平台内置了强大的视频解码、转码、压缩等技术,能够处理多种视频流格式,并以多种格式(RTMP、RTSP、HTTP-FLV、WebS

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,