分享一个基于文本挖掘的微博舆情分析系统Python网络舆情监控系统Flask爬虫项目大数据(源码、调试、LW、开题、PPT)

本文主要是介绍分享一个基于文本挖掘的微博舆情分析系统Python网络舆情监控系统Flask爬虫项目大数据(源码、调试、LW、开题、PPT),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

💕💕作者:计算机源码社
💕💕个人简介:本人 八年开发经验,擅长Java、Python、PHP、.NET、Node.js、Android、微信小程序、爬虫、大数据、机器学习等,大家有这一块的问题可以一起交流!
💕💕学习资料、程序开发、技术解答、文档报告
💕💕如需要源码,可以扫取文章下方二维码联系咨询

💕💕Java项目
💕💕微信小程序项目
💕💕Android项目
💕💕Python项目
💕💕PHP项目
💕💕ASP.NET项目
💕💕Node.js项目
💕💕选题推荐

项目实战|基于python文本挖掘的网络舆情分析爬虫毕设源码

文章目录

  • 1、选题背景
  • 2、研究目的和意义
  • 3、系统功能设计
  • 4、系统页面设计
  • 5、参考文献
  • 6、核心代码

1、选题背景

  随着社交媒体的迅速发展,微博作为中国最具影响力的社交平台之一,成为了用户表达观点、分享信息的重要渠道。然而,海量的微博数据也使得舆情的监控和分析变得极为复杂。传统的舆情监控方式往往依赖人工,效率低且容易错失重要信息。借助文本挖掘技术,可以自动化地处理和分析微博中的海量数据,快速捕捉公众情绪的变化趋势,识别潜在的舆情热点。Python、Flask等技术的成熟应用为开发高效的舆情监控系统提供了技术保障,通过这些技术手段可以实现对微博数据的全面采集和深度分析。

2、研究目的和意义

  本系统的开发旨在构建一个高效的微博舆情分析与监控平台,帮助企业、政府及相关机构实时了解社交媒体上的舆情动态。通过Scrapy爬虫技术自动化地采集微博中与特定舆情相关的数据,并将其存储到MySQL数据库中,以便后续的数据处理和分析。系统还集成了大屏可视化分析功能,通过Echarts展示微博数据的多维度统计信息,如评论、分享、点赞数量以及发布城市和舆情数量等,帮助用户直观地掌握舆情分布和发展态势,为及时应对突发事件和优化决策提供数据支持。

  开发基于文本挖掘的微博舆情分析系统不仅能够提高舆情监控的自动化程度,还能增强分析的准确性和实时性。通过引入Python、Flask和Echarts等技术,系统能够实时处理和展示微博数据,为用户提供全面、清晰的舆情信息。这对于政府和企业在应对突发事件、维护品牌形象、了解公众意见等方面具有重要意义。同时,系统的可扩展性和灵活性使得其能够适应不同场景下的舆情分析需求,提升了舆情监控的智能化水平,促进了信息时代背景下的社会稳定与企业发展。

3、系统功能设计

本文致力于构建一个基于文本挖掘的微博舆情分析系统,通过全面的数据采集、处理、分析与可视化展示,实现对微博平台上网络舆情的实时监控与分析。研究首先通过Scrapy爬虫技术自动化地获取微博中与舆情相关的数据,包括微博内容、评论、分享、点赞数量以及发布地点等多维度信息。爬取的数据经过数据清洗和处理,去除冗余信息和噪声,以保证数据的质量和分析的准确性。处理后的数据存储在MySQL数据库中,便于高效的管理和查询,为后续的分析打下坚实的基础。

研究将重点放在数据分析与可视化展示上。基于文本挖掘技术,对微博数据进行深入分析,提取出舆情的核心内容和趋势。通过Echarts框架,系统将数据以大屏可视化的方式展示,涵盖评论数量统计、分享数量统计、点赞数量统计、发布城市统计和舆情数量统计等多项关键指标。通过这些可视化分析,用户能够直观地掌握微博舆情的分布情况和变化趋势,为舆情的及时应对提供数据支持。

研究还探讨了如何通过Python和Flask框架搭建一个功能全面的Web网站。该网站不仅实现了用户登录与管理功能,还提供了网络舆情数据的管理和可视化分析模块,用户可以通过Web界面进行舆情数据的查看和分析。系统设计中还考虑了用户体验和系统性能的优化,确保系统的易用性和高效性。本研究旨在通过多种技术的综合应用,构建一个高效、可靠的微博舆情分析系统,提升舆情监控的智能化水平。

4、系统页面设计

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
如需要源码,可以扫取文章下方二维码联系咨询

5、参考文献

[1]杨春,王秋怡,林伊莼,等.浅谈基于区块链的校园舆情分析系统[J].中国设备工程,2024,(16):254-256.
[2]郑登元.基于朴素贝叶斯的网络舆情话语生态分析[J].电脑与信息技术,2024,32(04):46-50.DOI:10.19414/j.cnki.1005-1228.2024.04.032.
[3]唐雨霞,左尚扬,易业曦,等.一套基于数据挖掘技术的网络舆情预警系统开发研究[J].电脑知识与技术,2024,20(21):67-70.DOI:10.14004/j.cnki.ckt.2024.1088.
[4]侯颖.基于注意力机制的文本细粒度情感分析研究[D].山东师范大学,2024. DOI:10.27280/d.cnki.gsdsu.2024.001006.
[5]陈冲,谭睿璞,张文德,等.基于中智数的突发事件网络舆情辅助决策方法研究[J].中国安全生产科学技术,2024,20(05):50-56.
[6]郑锐斌,贺丹,王凯,等.深度学习技术在高校网络舆情分析中的应用[J].福建电脑,2024,40(05):21-26.DOI:10.16707/j.cnki.fjpc.2024.05.004.
[7]蔡增玉,韩洋,张建伟,等.基于SnowNLP的微博网络舆情分析系统[J].科学技术与工程,2024,24(13):5457-5464.
[8]赵学志,范梦瑶,顾玥琪,等.基于微博数据的江苏大丰海域5.0级地震舆情分析与有感范围提取[J].科技与创新,2024,(09):133-135.DOI:10.15913/j.cnki.kjycx.2024.09.040.
[9]李艳.基于BERT和深度学习的网络舆情情感分析[J].信息记录材料,2024,25(05):100-102.DOI:10.16009/j.cnki.cn13-1295/tq.2024.05.047.
[10]唐锦源.人工智能在网络舆情分析中的应用研究[J].信息记录材料,2024,25(05):112-114.DOI:10.16009/j.cnki.cn13-1295/tq.2024.05.051.
[11]李敏,项朝辉.基于微博短文本的ChatGPT话题舆情分析[J].电脑编程技巧与维护,2024,(04):88-91.DOI:10.16184/j.cnki.comprg.2024.04.032.
[12]宋钰,牛紫琳.元宇宙是颠覆还是噱头?——基于文献计量与质性方法校准的舆情追踪[J/OL].图书馆论坛,1-11[2024-08-24].http://kns.cnki.net/kcms/detail/44.1306.G2.20240408.1846.002.html.
[13]宝日彤,孙海春.基于滑动窗口主题差异值的舆情反转预警研究[J/OL].数据分析与知识发现,1-12[2024-08-24].http://kns.cnki.net/kcms/detail/10.1478.G2.20240409.1620.004.html.
[14]李锦辉,刘继.基于知识蒸馏模型的文本情感分析[J].软件工程,2024,27(04):27-32.DOI:10.19644/j.cnki.issn2096-1472.2024.004.006.
[15]王健,杨柳,李雪松,等.ChatGPT网络舆情特征多维度演化分析[J].情报杂志,2024,43(07):138-145.
[16]代青松,李泽华.基于大数据技术网络舆情分析系统[J].电脑编程技巧与维护,2024,(03):72-75.DOI:10.16184/j.cnki.comprg.2024.03.025.
[17]何西远,张岳,张秉文.基于分布式爬虫的微博舆情监督与情感分析系统设计[J].现代信息科技,2024,8(05):111-114+119.DOI:10.19850/j.cnki.2096-4706.2024.05.024.
[18]王龙军,王晶,李光华,等.基于文本挖掘的图书馆舆情情感分析[J].电脑与电信,2024,(03):13-16.DOI:10.15966/j.cnki.dnydx.2024.03.020.
[19]梁昕,刘天颖.自动化行政裁量中算法风险感知的特征与演化研究——基于网络舆情的大数据分析[J].公共行政评论,2024,17(01):45-65+197.
[20]韦芬.基于并行计算的网络舆情数据分析方法研究[J].电子设计工程,2024,32(02):31-35.DOI:10.14022/j.issn1674-6236.2024.02.007.

6、核心代码

# # -*- coding: utf-8 -*-# 数据爬取文件import scrapy
import pymysql
import pymssql
from ..items import WangluoyuqingItem
import time
from datetime import datetime,timedelta
import datetime as formattime
import re
import random
import platform
import json
import os
import urllib
from urllib.parse import urlparse
import requests
import emoji
import numpy as np
import pandas as pd
from sqlalchemy import create_engine
from selenium.webdriver import ChromeOptions, ActionChains
from scrapy.http import TextResponse
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.wait import WebDriverWait
# 网络舆情
class WangluoyuqingSpider(scrapy.Spider):name = 'wangluoyuqingSpider'spiderUrl = 'https://m.weibo.cn/api/container/getIndex?containerid=100103type%3D1%26q%3D%E7%BD%91%E7%BB%9C%E8%88%86%E6%83%85&_T_WM=57111142162&v_p=42&page_type=searchall'start_urls = spiderUrl.split(";")protocol = ''hostname = ''realtime = Falseheaders = {'Referer':'https://m.weibo.cn/search?containerid=100103type%3D1%26q%3D%E7%BD%91%E7%BB%9C%E8%88%86%E6%83%85&_T_WM=57111142162&v_p=42',
'Cookie':'用自己的Cookie'}def __init__(self,realtime=False,*args, **kwargs):super().__init__(*args, **kwargs)self.realtime = realtime=='true'def start_requests(self):plat = platform.system().lower()if not self.realtime and (plat == 'linux' or plat == 'windows'):connect = self.db_connect()cursor = connect.cursor()if self.table_exists(cursor, '792099hc_wangluoyuqing') == 1:cursor.close()connect.close()self.temp_data()returnpageNum = 1 + 1for url in self.start_urls:if '{}' in url:for page in range(1, pageNum):next_link = url.format(page)yield scrapy.Request(url=next_link,headers=self.headers,callback=self.parse)else:yield scrapy.Request(url=url,headers=self.headers,callback=self.parse)# 列表解析def parse(self, response):_url = urlparse(self.spiderUrl)self.protocol = _url.schemeself.hostname = _url.netlocplat = platform.system().lower()if not self.realtime and (plat == 'linux' or plat == 'windows'):connect = self.db_connect()cursor = connect.cursor()if self.table_exists(cursor, '792099hc_wangluoyuqing') == 1:cursor.close()connect.close()self.temp_data()returndata = json.loads(response.body)try:list = data["data"]["cards"]except:passfor item in list:fields = WangluoyuqingItem()try:fields["author"] = emoji.demojize(self.remove_html(str( item["card_group"][0]["mblog"]["user"]["screen_name"] )))except:passtry:fields["text"] = emoji.demojize(self.remove_html(str( item["card_group"][0]["mblog"]["text"] )))except:passtry:fields["bozhuinfo"] = emoji.demojize(self.remove_html(str( item["card_group"][0]["mblog"]["user"]["description"] )))except:passtry:fields["comments"] = int( item["card_group"][0]["mblog"]["comments_count"])except:passtry:fields["attitudes"] = int( item["card_group"][0]["mblog"]["attitudes_count"])except:passtry:fields["reposts"] = int( item["card_group"][0]["mblog"]["reposts_count"])except:passtry:fields["city"] = emoji.demojize(self.remove_html(str( item["card_group"][0]["mblog"]["status_city"] )))except:passtry:fields["detailurl"] = emoji.demojize(self.remove_html(str( item["card_group"][0]["scheme"] )))except:passyield fields# 详情解析def detail_parse(self, response):fields = response.meta['fields']return fields# 数据清洗def pandas_filter(self):engine = create_engine('mysql+pymysql://root:123456@localhost/spider792099hc?charset=UTF8MB4')df = pd.read_sql('select * from wangluoyuqing limit 50', con = engine)# 重复数据过滤df.duplicated()df.drop_duplicates()#空数据过滤df.isnull()df.dropna()# 填充空数据df.fillna(value = '暂无')# 异常值过滤# 滤出 大于800 和 小于 100 的a = np.random.randint(0, 1000, size = 200)cond = (a<=800) & (a>=100)a[cond]# 过滤正态分布的异常值b = np.random.randn(100000)# 3σ过滤异常值,σ即是标准差cond = np.abs(b) > 3 * 1b[cond]# 正态分布数据df2 = pd.DataFrame(data = np.random.randn(10000,3))# 3σ过滤异常值,σ即是标准差cond = (df2 > 3*df2.std()).any(axis = 1)# 不满⾜条件的⾏索引index = df2[cond].index# 根据⾏索引,进⾏数据删除df2.drop(labels=index,axis = 0)# 去除多余html标签def remove_html(self, html):if html == None:return ''pattern = re.compile(r'<[^>]+>', re.S)return pattern.sub('', html).strip()# 数据库连接def db_connect(self):type = self.settings.get('TYPE', 'mysql')host = self.settings.get('HOST', 'localhost')port = int(self.settings.get('PORT', 3306))user = self.settings.get('USER', 'root')password = self.settings.get('PASSWORD', '123456')try:database = self.databaseNameexcept:database = self.settings.get('DATABASE', '')if type == 'mysql':connect = pymysql.connect(host=host, port=port, db=database, user=user, passwd=password, charset='utf8')else:connect = pymssql.connect(host=host, user=user, password=password, database=database)return connect# 断表是否存在def table_exists(self, cursor, table_name):cursor.execute("show tables;")tables = [cursor.fetchall()]table_list = re.findall('(\'.*?\')',str(tables))table_list = [re.sub("'",'',each) for each in table_list]if table_name in table_list:return 1else:return 0# 数据缓存源def temp_data(self):connect = self.db_connect()cursor = connect.cursor()sql = '''insert into `wangluoyuqing`(id,author,text,bozhuinfo,comments,attitudes,reposts,city,detailurl)selectid,author,text,bozhuinfo,comments,attitudes,reposts,city,detailurlfrom `792099hc_wangluoyuqing`where(not exists (selectid,author,text,bozhuinfo,comments,attitudes,reposts,city,detailurlfrom `wangluoyuqing` where`wangluoyuqing`.id=`792099hc_wangluoyuqing`.id))order by rand()limit 50;'''cursor.execute(sql)connect.commit()connect.close()

💕💕作者:计算机源码社
💕💕个人简介:本人 八年开发经验,擅长Java、Python、PHP、.NET、Node.js、Android、微信小程序、爬虫、大数据、机器学习等,大家有这一块的问题可以一起交流!
💕💕学习资料、程序开发、技术解答、文档报告
💕💕如需要源码,可以扫取文章下方二维码联系咨询

这篇关于分享一个基于文本挖掘的微博舆情分析系统Python网络舆情监控系统Flask爬虫项目大数据(源码、调试、LW、开题、PPT)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1103161

相关文章

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

一文教你如何将maven项目转成web项目

《一文教你如何将maven项目转成web项目》在软件开发过程中,有时我们需要将一个普通的Maven项目转换为Web项目,以便能够部署到Web容器中运行,本文将详细介绍如何通过简单的步骤完成这一转换过程... 目录准备工作步骤一:修改​​pom.XML​​1.1 添加​​packaging​​标签1.2 添加

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的