[医疗 AI ] 3D TransUNet:通过 Vision Transformer 推进医学图像分割

2024-08-24 15:04

本文主要是介绍[医疗 AI ] 3D TransUNet:通过 Vision Transformer 推进医学图像分割,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

[医疗 AI ]
3D TransUNet:通过 Vision Transformer 推进医学图像分割’
论文地址 - https://arxiv.org/pdf/2310.07781

0. 摘要

医学图像分割在推进医疗保健系统的疾病诊断和治疗计划中起着至关重要的作用。U 形架构,俗称 U-Net,已被证明在各种医学图像分割任务中非常成功。然而,U-Net 基于卷积的操作本身限制了其有效建模远程依赖关系的能力。为了解决这些限制,研究人员转向了以其全局自我注意机制而闻名的 Transformer 作为替代架构。一个流行的网络是我们以前的 TransUNet,它利用 Transformers 的自我关注来补充 U-Net 的本地化信息与全局背景。在本文中,我们通过构建最先进的 nnU-Net 架构,将 2D TransUNet 架构扩展到 3D 网络,并充分探索 Transformers 在编码器和解码器设计中的潜力。我们介绍了两个关键组件:1) 一个 Transformer 编码器,它对来自卷积神经网络 (CNN) 特征图的图像补丁进行标记,从而能够提取全局上下文,以及 2) 一个 Transformer 解码器,它通过利用候选提案和 U-Net 特征之间的交叉注意力来自适应地优化候选区域。我们的调查表明,不同的医疗任务受益于不同的建筑设计。Transformer 编码器在多器官分割中表现出色,其中器官之间的关系至关重要。另一方面,Transformer 解码器被证明更有利于处理小且具有挑战性的分割目标,例如肿瘤分割。广泛的实验展示了集成基于 Transformer 的编码器和解码器集成到 U 形医疗图像分割架构中。TransUNet 在各种医疗应用中优于竞争对手,包括多器官分割、胰腺肿瘤分割和肝血管分割。它明显超越了 BrasTS2021 挑战赛中的顶级解决方案。代码和模型可在 https://github.com/Beckschen/ 3D-TransUNet 上获得。

1. 引言

卷积神经网络 (CNN),尤其是全卷积网络 (FCN) [1],在医学图像分割领域已经崛起。在他们的各种迭代中,U-Net 模型 [2] 的特点是其对称编码器-解码器设计,并通过跳过连接进行了增强以改善细节保留,是许多研究人员的首选。基于这种方法,在各种医学成像任务中取得了显著进展。这些进步包括磁共振 (MR) 成像中的心脏分割 [3]、使用计算机断层扫描 (CT) 扫描 [4]-[7] 的器官描绘以及结肠镜检查记录中的息肉分割 [8]。

尽管 CNN 具有无与伦比的表示能力,但由于卷积运算的固有局部性,它们在建模远程关系时经常步履蹒跚。这种限制在患者间质地、形状和大小差异较大的病例中尤为明显。认识到这一局限性,研究界越来越被 Transformers 所吸引,由于它们在捕捉全球背景方面的天生能力,这些模型完全建立在注意力机制之上 [9]。在医学图像分割领域,我们之前与 TransUNet [10] 的合作证明了变压器的潜力。然而,我们研究中的一个关键观察表明,简单地用 Transformer 替换 CNN 编码器可能会导致次优结果。Transformer 将输入作为 1D 序列处理,并优先考虑全局上下文建模,从而无意中产生低分辨率的特征。直接对此类特征进行上采样无法重新引入丢失的粒度。相比之下,结合 CNN 和 Transformer 编码器的混合方法似乎更有前途。它有效地利用了 CNN 的高分辨率空间细节,同时还受益于 Transformers 提供的全局环境。

在这项研究中,我们将原始的 2D TransUNet 架构扩展到 3D 配置,更深入地研究了 Transformer 在编码和解码过程中的战略性整合。这一飞跃植根于 nnU-Net 框架的实力,其愿景是超越其既定标准。我们的 3D TransUNet 通过两个主要机制展开:首先,Transformer 编码器将 CNN 特征图中的图像块标记化,允许将全局自聚焦特征与从编码路径跳过的高分辨率 CNN 特征无缝融合,以实现精确定位。其次,Transformer Decoder 将传统的每像素分割重新定义为掩码分类,将预测候选者构建为可学习的查询。具体来说,这些查询通过协同交叉注意力与局部多尺度 CNN 特征来逐步完善。此外,我们在 Transformer 解码器中引入了粗到细的注意力细化,对于每个分割类,使用专注于预测前景的注意力机制精心细化初始候选集,确保每个迭代细化为后续为后续设定新标准,最终不断提高分割精度。

通过将 Transformer 集成到类似 U-Net 架构的编码器和解码器组件中,我们证明了我们的设计允许框架保留 Transformer 的优势,同时增强医学图像分割。有趣的是,多器官分割在很大程度上依赖于全局上下文信息(例如不同腹部器官之间的相互作用),倾向于使用 Transformer 编码器设计。相反,像小目标分割这样的任务,如肿瘤检测,通常从 Transformer 解码器设计中受益更多。我们广泛的实验表明,与各种医学图像分割任务中的竞争方法相比,我们的方法具有卓越的性能。总而言之,我们的贡献可以总结如下:

  • 我们引入了一个以 Transformer 为中心的医学图像分割框架,将自我注意整合到序列到序列预测上下文中,适用于 2D 和 3D 医学图像分割任务。
  • 我们彻底研究了将视觉变压器集成到 U 形分割架构的编码器和解码器中的影响,为定制设计提供见解,以应对不同的医学图像分割挑战。
  • 我们在各种医学图像分割任务上取得了最先进的结果,并发布了我们的代码库以鼓励进一步探索将 Transformer 应用于医疗应用。

网络结构:
在这里插入图片描述

这篇关于[医疗 AI ] 3D TransUNet:通过 Vision Transformer 推进医学图像分割的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1102811

相关文章

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

C++字符串提取和分割的多种方法

《C++字符串提取和分割的多种方法》在C++编程中,字符串处理是一个常见的任务,尤其是在需要从字符串中提取特定数据时,本文将详细探讨如何使用C++标准库中的工具来提取和分割字符串,并分析不同方法的适用... 目录1. 字符串提取的基本方法1.1 使用 std::istringstream 和 >> 操作符示

Spring AI ectorStore的使用流程

《SpringAIectorStore的使用流程》SpringAI中的VectorStore是一种用于存储和检索高维向量数据的数据库或存储解决方案,它在AI应用中发挥着至关重要的作用,本文给大家介... 目录一、VectorStore的基本概念二、VectorStore的核心接口三、VectorStore的

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2

Spring AI集成DeepSeek实现流式输出的操作方法

《SpringAI集成DeepSeek实现流式输出的操作方法》本文介绍了如何在SpringBoot中使用Sse(Server-SentEvents)技术实现流式输出,后端使用SpringMVC中的S... 目录一、后端代码二、前端代码三、运行项目小天有话说题外话参考资料前面一篇文章我们实现了《Spring

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll