动态规划之买卖股票篇-代码随想录算法训练营第三十八天| 买卖股票的最佳时机ⅠⅡⅢⅣ,309.最佳买卖股票时机含冷冻期,714.买卖股票的最佳时机含手续费

本文主要是介绍动态规划之买卖股票篇-代码随想录算法训练营第三十八天| 买卖股票的最佳时机ⅠⅡⅢⅣ,309.最佳买卖股票时机含冷冻期,714.买卖股票的最佳时机含手续费,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

121. 买卖股票的最佳时机

题目链接:. - 力扣(LeetCode)

讲解视频:

动态规划之 LeetCode:121.买卖股票的最佳时机1

题目描述:

给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。

你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。

返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。

示例 1:

输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。

解题思路:

1、状态表示:

0表示买入,1表示卖出

dp[i][0]:第i天结束时,处于「买入」状态,此时的最大利润;

dp[i][1]:第i天结束时,处于「卖出」状态,此时的最大利润;

2、状态转移方程:

因为只能买卖一次,故买入时手中利润为0
dp[i][0] = max(dp[i-1][0],0-prices[i]);
dp[i][1] = max(dp[i-1][1],dp[i-1][0] + prices[i]);

3、初始化:

dp[0][0] = -1*prices[0],dp[0][1] = 0

4、遍历顺序:

按prices从左往右遍历

5、返回值:

返回dp[n-1][1](没有dp[n-1][0]原因是如果当前还存有股票,一定不是最大利润)

 

代码:

class Solution {
public:int maxProfit(vector<int>& prices) {int n = prices.size();vector<vector<int>> dp(n,vector<int>(2));dp[0][0] = -prices[0];for(int i = 1; i < n; i++){dp[i][0] = max(dp[i-1][0],0-prices[i]);dp[i][1] = max(dp[i-1][1],dp[i-1][0] + prices[i]);}return dp[n-1][1];}
};

122.买卖股票的最佳时机II

题目链接:. - 力扣(LeetCode)

讲解视频:

动态规划,股票问题第二弹 | LeetCode:122.买卖股票的最佳时机II

题目描述:

给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。

在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。

返回 你能获得的 最大 利润 。

示例 1:

输入:prices = [7,1,5,3,6,4]
输出:7
解释:在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3。
最大总利润为 4 + 3 = 7 。

解题思路:

1、状态表示:

0表示买入,1表示卖出
dp[i][0]:第i天结束时,处于「买入」状态,此时的最大利润;

dp[i][1]:第i天结束时,处于「卖出」状态,此时的最大利润;

2、状态转移方程:

可以买卖无数次,故买入时手中利润为dp[i-1][1]
dp[i][0] = max(dp[i-1][0],dp[i-1][1]-prices[i]);//就此处与上一题不一样
dp[i][1] = max(dp[i-1][1],dp[i-1][0] + prices[i]);

3、初始化:

dp[0][0] = -1*prices[0],dp[0][1] = 0

4、遍历顺序:

按prices从左往右遍历

5、返回值:

返回dp[n-1][1](没有dp[n-1][0]原因是如果当前还存有股票,一定不是最大利润)

代码:

class Solution {
public:int maxProfit(vector<int>& prices) {int n = prices.size();vector<vector<int>> dp(n,vector<int>(2));dp[0][0] = -1 * prices[0];for(int i = 1; i < n; i++){dp[i][0] = max(dp[i-1][0],dp[i-1][1]-prices[i]);dp[i][1] = max(dp[i-1][1],dp[i-1][0]+prices[i]);}return dp[n-1][1];}
};

123.买卖股票的最佳时机III

题目链接:. - 力扣(LeetCode)

讲解视频:

动态规划,股票至多买卖两次,怎么求? | LeetCode:123.买卖股票最佳时机III

题目描述:

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入:prices = [3,3,5,0,0,3,1,4]
输出:6
解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。

解题思路:

1、状态表示:

f[i][j] 表示:第 i 天结束后,完成了 j 次交易,处于「买入」状态,此时的最大利润;
g[i][j] 表示:第 i 天结束后,完成了 j 次交易,处于「卖出」状态,此时的最大利润。

2、状态转移方程:

对于 f[i][j] ,我们有两种情况到这个状态:

  1. 在 i - 1 天的时候,交易了 j 次,处于「买入」状态,第 i 天啥也不干即可。此时最大利润为: f[i - 1][j] ;
  2. 在 i - 1 天的时候,交易了 j 次,处于「卖出」状态,第 i 天的时候把股票买了。此时的最大利润为: g[i - 1][j] - prices[i] 。

综上,我们要的是「最大利润」,因此是两者的最大值:

f[i][j] = max(f[i - 1][j],g[i - 1][j] - prices[i]) 。


对于 g[i][j] ,我们也有两种情况可以到达这个状态:

  1. 在 i - 1 天的时候,交易了 j 次,处于「卖出」状态,第 i 天啥也不干即可。此时的最大利润为: g[i - 1][j] ;
  2. 在 i - 1 天的时候,交易了 j - 1 次,处于「买入」状态,第 i 天把股票卖了,然后就完成了 j 比交易。此时的最大利润为: f[i - 1][j - 1] + prices[i] 。但是这个状态不一定存在,要先判断一下。

综上,我们要的是最大利润,因此状态转移方程为:
g[i][j] = g[i - 1][j];
if(j >= 1) g[i][j] = max(g[i][j], f[i - 1][j - 1] + prices[i]);
 

3、初始化:

f[0][0] = - prices[0] 。

f[0][k](k>=1)为不存在状态,为了取 max 的时候,这些状态「起不到干扰」的作用,我们统统将它们初始化为 -INF (用 INT_MIN 在计算过程中会有「溢出」的风险,这里 INF 折半取0x3f3f3f3f ,足够小即可)

4、遍历顺序:

从「上往下填」每一行,每一行「从左往右」,两个表「一起填」。

5、返回值:

返回处于「卖出状态」的最大值,但是我们也「不知道是交易了几次」,因此返回 g 表最后一行的最大值。

代码:

class Solution {
public:int maxProfit(vector<int>& prices) {int n = prices.size();vector<vector<int>> f(n,vector<int>(3));auto g = f;f[0][0] = -1 * prices[0];for(int j = 1; j < 3; j++)f[0][j] = g[0][j] = -1 * 0x3f3f3f3f;for(int i = 1; i < n ; i++){for(int j = 0; j < 3; j++){f[i][j] = max(f[i-1][j], g[i-1][j] - prices[i]);g[i][j] = g[i-1][j];if(j >= 1) g[i][j] = max(g[i][j],f[i-1][j-1]+prices[i]);}}int result = 0;for(int i = 0; i < 3; i++)result = max(g[n-1][i],result);return result;}
};

188.买卖股票的最佳时机IV

题目链接:. - 力扣(LeetCode)

讲解视频:

动态规划来决定最佳时机,至多可以买卖K次!| LeetCode:188.买卖股票最佳时机4

题目描述:

给你一个整数数组 prices 和一个整数 k ,其中 prices[i] 是某支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。也就是说,你最多可以买 k 次,卖 k 次。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入:k = 2, prices = [2,4,1]
输出:2
解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。

解题思路:

在上一题的基础上将交易2次改为交易k次,需要注意会存在交易不符合实际情况--交易次数k大于总天数的一半(2天为一次交易周期),需要预处理k值

代码:

class Solution {
public:int maxProfit(int k, vector<int>& prices) {const int INF = -1 * 0x3f3f3f3f;int n = prices.size();k = min(k,n/2);vector<vector<int>> f(n,vector<int>(k+1,INF));auto g = f;f[0][0] = -1 * prices[0];g[0][0] = 0;for(int i = 1; i < n; i++){for(int j = 0; j <= k; j++){f[i][j] = max(f[i-1][j],g[i-1][j]-prices[i]);g[i][j] = g[i-1][j];if(j >= 1) g[i][j] = max(g[i][j], f[i-1][j-1]+prices[i]);}}int result = 0;for(int i = 0; i <= k; i++)result = max(result,g[n-1][i]);return result;}
};

309.最佳买卖股票时机含冷冻期

题目链接:. - 力扣(LeetCode)

讲解视频:

动态规划来决定最佳时机,这次有冷冻期!| LeetCode:309.买卖股票的最佳时机含冷冻期

题目描述:

给定一个整数数组prices,其中第  prices[i] 表示第 i 天的股票价格 。​

设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):

  • 卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入: prices = [1,2,3,0,2]
输出: 3 
解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]

解题思路:

1、状态表示:

有「买入」「可交易」「冷冻期」三个状态。

选择用三个数组:

dp[i][0] 表示:第 i 天结束后,处于「买入」状态,此时的最大利润;

dp[i][1] 表示:第 i 天结束后,处于「冷冻期」状态,此时的最大利润;
dp[i][2] 表示:第 i 天结束后,处于「可交易」状态,此时的最大利润。

2、状态转移方程:

谨记规则:

1)处于「买入」状态的时候,我们现在有股票,此时不能买股票,只能继续持有股票,或者卖出股票;

2)处于「卖出」状态的时候:

  • 如果「在冷冻期」,不能买入;
  • 如果「不在冷冻期」,才能买入。

根据如下状态图可以得到状态表示:

 dp[i][0] = max(dp[i-1][0],dp[i-1][2]-prices[i]);//买入
 dp[i][1] = dp[i-1][0]+prices[i];//冷冻期
 dp[i][2] = max(dp[i-1][1],dp[i-1][2]);//可交易

3、初始化:

三种状态都会用到前一个位置的值,因此需要初始化每一行的第一个位置:
dp[0][0] :此时要想处于「买入」状态,必须把第一天的股票买了,因此 dp[0][0] = -1*
prices[0] ;
dp[0][1] :手上没有股票,买一下卖一下就处于冷冻期,此时收益为 0 ,因此dp[0][2]= 0 ;
dp[0][2] :啥也不用干即可,因此 dp[0][1] = 0 。

4、遍历顺序:

根据「状态表示」,我们要三个表一起填,每一个表「从左往右」。

5、返回值:

应该返回「卖出状态」下的最大值,因此应该返回max(dp[n-1][1],dp[n-1][2])。

 代码:

class Solution {
public:int maxProfit(vector<int>& prices) {int n = prices.size();vector<vector<int>> dp(n,vector<int>(3));dp[0][0] = -1 * prices[0];for(int i = 1; i < n; i++){dp[i][0] = max(dp[i-1][0],dp[i-1][2]-prices[i]);//买入dp[i][1] = dp[i-1][0]+prices[i];//冷冻期dp[i][2] = max(dp[i-1][1],dp[i-1][2]);//可交易}return max(dp[n-1][1],dp[n-1][2]);}
};

714.买卖股票的最佳时机含手续费

题目链接:. - 力扣(LeetCode)

讲解视频:

动态规划来决定最佳时机,这次含手续费!| LeetCode:714.买卖股票的最佳时机含手续费

题目描述:

给定一个整数数组 prices,其中 prices[i]表示第 i 天的股票价格 ;整数 fee 代表了交易股票的手续费用。

你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。

返回获得利润的最大值。

注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。

示例 1:

输入:prices = [1, 3, 2, 8, 4, 9], fee = 2
输出:8
解释:能够达到的最大利润:  
在此处买入 prices[0] = 1
在此处卖出 prices[3] = 8
在此处买入 prices[4] = 4
在此处卖出 prices[5] = 9
总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8

解题思路:

在122.买卖股票的最佳时机Ⅱ基础上每次交易时减去fee手续费即可

代码:

class Solution {
public:int maxProfit(vector<int>& prices, int fee) {int n = prices.size();vector<vector<int>> dp(n,vector<int>(2));dp[0][0] = -1 * prices[0];for(int i = 1; i < n; i ++){dp[i][0] = max(dp[i-1][0],dp[i-1][1]-prices[i]);dp[i][1] = max(dp[i-1][1],dp[i-1][0]+prices[i]-fee);}return dp[n-1][1];}
};

这篇关于动态规划之买卖股票篇-代码随想录算法训练营第三十八天| 买卖股票的最佳时机ⅠⅡⅢⅣ,309.最佳买卖股票时机含冷冻期,714.买卖股票的最佳时机含手续费的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1101995

相关文章

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st