动态规划之买卖股票篇-代码随想录算法训练营第三十八天| 买卖股票的最佳时机ⅠⅡⅢⅣ,309.最佳买卖股票时机含冷冻期,714.买卖股票的最佳时机含手续费

本文主要是介绍动态规划之买卖股票篇-代码随想录算法训练营第三十八天| 买卖股票的最佳时机ⅠⅡⅢⅣ,309.最佳买卖股票时机含冷冻期,714.买卖股票的最佳时机含手续费,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

121. 买卖股票的最佳时机

题目链接:. - 力扣(LeetCode)

讲解视频:

动态规划之 LeetCode:121.买卖股票的最佳时机1

题目描述:

给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。

你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。

返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。

示例 1:

输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。

解题思路:

1、状态表示:

0表示买入,1表示卖出

dp[i][0]:第i天结束时,处于「买入」状态,此时的最大利润;

dp[i][1]:第i天结束时,处于「卖出」状态,此时的最大利润;

2、状态转移方程:

因为只能买卖一次,故买入时手中利润为0
dp[i][0] = max(dp[i-1][0],0-prices[i]);
dp[i][1] = max(dp[i-1][1],dp[i-1][0] + prices[i]);

3、初始化:

dp[0][0] = -1*prices[0],dp[0][1] = 0

4、遍历顺序:

按prices从左往右遍历

5、返回值:

返回dp[n-1][1](没有dp[n-1][0]原因是如果当前还存有股票,一定不是最大利润)

 

代码:

class Solution {
public:int maxProfit(vector<int>& prices) {int n = prices.size();vector<vector<int>> dp(n,vector<int>(2));dp[0][0] = -prices[0];for(int i = 1; i < n; i++){dp[i][0] = max(dp[i-1][0],0-prices[i]);dp[i][1] = max(dp[i-1][1],dp[i-1][0] + prices[i]);}return dp[n-1][1];}
};

122.买卖股票的最佳时机II

题目链接:. - 力扣(LeetCode)

讲解视频:

动态规划,股票问题第二弹 | LeetCode:122.买卖股票的最佳时机II

题目描述:

给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。

在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。

返回 你能获得的 最大 利润 。

示例 1:

输入:prices = [7,1,5,3,6,4]
输出:7
解释:在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3。
最大总利润为 4 + 3 = 7 。

解题思路:

1、状态表示:

0表示买入,1表示卖出
dp[i][0]:第i天结束时,处于「买入」状态,此时的最大利润;

dp[i][1]:第i天结束时,处于「卖出」状态,此时的最大利润;

2、状态转移方程:

可以买卖无数次,故买入时手中利润为dp[i-1][1]
dp[i][0] = max(dp[i-1][0],dp[i-1][1]-prices[i]);//就此处与上一题不一样
dp[i][1] = max(dp[i-1][1],dp[i-1][0] + prices[i]);

3、初始化:

dp[0][0] = -1*prices[0],dp[0][1] = 0

4、遍历顺序:

按prices从左往右遍历

5、返回值:

返回dp[n-1][1](没有dp[n-1][0]原因是如果当前还存有股票,一定不是最大利润)

代码:

class Solution {
public:int maxProfit(vector<int>& prices) {int n = prices.size();vector<vector<int>> dp(n,vector<int>(2));dp[0][0] = -1 * prices[0];for(int i = 1; i < n; i++){dp[i][0] = max(dp[i-1][0],dp[i-1][1]-prices[i]);dp[i][1] = max(dp[i-1][1],dp[i-1][0]+prices[i]);}return dp[n-1][1];}
};

123.买卖股票的最佳时机III

题目链接:. - 力扣(LeetCode)

讲解视频:

动态规划,股票至多买卖两次,怎么求? | LeetCode:123.买卖股票最佳时机III

题目描述:

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入:prices = [3,3,5,0,0,3,1,4]
输出:6
解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。

解题思路:

1、状态表示:

f[i][j] 表示:第 i 天结束后,完成了 j 次交易,处于「买入」状态,此时的最大利润;
g[i][j] 表示:第 i 天结束后,完成了 j 次交易,处于「卖出」状态,此时的最大利润。

2、状态转移方程:

对于 f[i][j] ,我们有两种情况到这个状态:

  1. 在 i - 1 天的时候,交易了 j 次,处于「买入」状态,第 i 天啥也不干即可。此时最大利润为: f[i - 1][j] ;
  2. 在 i - 1 天的时候,交易了 j 次,处于「卖出」状态,第 i 天的时候把股票买了。此时的最大利润为: g[i - 1][j] - prices[i] 。

综上,我们要的是「最大利润」,因此是两者的最大值:

f[i][j] = max(f[i - 1][j],g[i - 1][j] - prices[i]) 。


对于 g[i][j] ,我们也有两种情况可以到达这个状态:

  1. 在 i - 1 天的时候,交易了 j 次,处于「卖出」状态,第 i 天啥也不干即可。此时的最大利润为: g[i - 1][j] ;
  2. 在 i - 1 天的时候,交易了 j - 1 次,处于「买入」状态,第 i 天把股票卖了,然后就完成了 j 比交易。此时的最大利润为: f[i - 1][j - 1] + prices[i] 。但是这个状态不一定存在,要先判断一下。

综上,我们要的是最大利润,因此状态转移方程为:
g[i][j] = g[i - 1][j];
if(j >= 1) g[i][j] = max(g[i][j], f[i - 1][j - 1] + prices[i]);
 

3、初始化:

f[0][0] = - prices[0] 。

f[0][k](k>=1)为不存在状态,为了取 max 的时候,这些状态「起不到干扰」的作用,我们统统将它们初始化为 -INF (用 INT_MIN 在计算过程中会有「溢出」的风险,这里 INF 折半取0x3f3f3f3f ,足够小即可)

4、遍历顺序:

从「上往下填」每一行,每一行「从左往右」,两个表「一起填」。

5、返回值:

返回处于「卖出状态」的最大值,但是我们也「不知道是交易了几次」,因此返回 g 表最后一行的最大值。

代码:

class Solution {
public:int maxProfit(vector<int>& prices) {int n = prices.size();vector<vector<int>> f(n,vector<int>(3));auto g = f;f[0][0] = -1 * prices[0];for(int j = 1; j < 3; j++)f[0][j] = g[0][j] = -1 * 0x3f3f3f3f;for(int i = 1; i < n ; i++){for(int j = 0; j < 3; j++){f[i][j] = max(f[i-1][j], g[i-1][j] - prices[i]);g[i][j] = g[i-1][j];if(j >= 1) g[i][j] = max(g[i][j],f[i-1][j-1]+prices[i]);}}int result = 0;for(int i = 0; i < 3; i++)result = max(g[n-1][i],result);return result;}
};

188.买卖股票的最佳时机IV

题目链接:. - 力扣(LeetCode)

讲解视频:

动态规划来决定最佳时机,至多可以买卖K次!| LeetCode:188.买卖股票最佳时机4

题目描述:

给你一个整数数组 prices 和一个整数 k ,其中 prices[i] 是某支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。也就是说,你最多可以买 k 次,卖 k 次。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入:k = 2, prices = [2,4,1]
输出:2
解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。

解题思路:

在上一题的基础上将交易2次改为交易k次,需要注意会存在交易不符合实际情况--交易次数k大于总天数的一半(2天为一次交易周期),需要预处理k值

代码:

class Solution {
public:int maxProfit(int k, vector<int>& prices) {const int INF = -1 * 0x3f3f3f3f;int n = prices.size();k = min(k,n/2);vector<vector<int>> f(n,vector<int>(k+1,INF));auto g = f;f[0][0] = -1 * prices[0];g[0][0] = 0;for(int i = 1; i < n; i++){for(int j = 0; j <= k; j++){f[i][j] = max(f[i-1][j],g[i-1][j]-prices[i]);g[i][j] = g[i-1][j];if(j >= 1) g[i][j] = max(g[i][j], f[i-1][j-1]+prices[i]);}}int result = 0;for(int i = 0; i <= k; i++)result = max(result,g[n-1][i]);return result;}
};

309.最佳买卖股票时机含冷冻期

题目链接:. - 力扣(LeetCode)

讲解视频:

动态规划来决定最佳时机,这次有冷冻期!| LeetCode:309.买卖股票的最佳时机含冷冻期

题目描述:

给定一个整数数组prices,其中第  prices[i] 表示第 i 天的股票价格 。​

设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):

  • 卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入: prices = [1,2,3,0,2]
输出: 3 
解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]

解题思路:

1、状态表示:

有「买入」「可交易」「冷冻期」三个状态。

选择用三个数组:

dp[i][0] 表示:第 i 天结束后,处于「买入」状态,此时的最大利润;

dp[i][1] 表示:第 i 天结束后,处于「冷冻期」状态,此时的最大利润;
dp[i][2] 表示:第 i 天结束后,处于「可交易」状态,此时的最大利润。

2、状态转移方程:

谨记规则:

1)处于「买入」状态的时候,我们现在有股票,此时不能买股票,只能继续持有股票,或者卖出股票;

2)处于「卖出」状态的时候:

  • 如果「在冷冻期」,不能买入;
  • 如果「不在冷冻期」,才能买入。

根据如下状态图可以得到状态表示:

 dp[i][0] = max(dp[i-1][0],dp[i-1][2]-prices[i]);//买入
 dp[i][1] = dp[i-1][0]+prices[i];//冷冻期
 dp[i][2] = max(dp[i-1][1],dp[i-1][2]);//可交易

3、初始化:

三种状态都会用到前一个位置的值,因此需要初始化每一行的第一个位置:
dp[0][0] :此时要想处于「买入」状态,必须把第一天的股票买了,因此 dp[0][0] = -1*
prices[0] ;
dp[0][1] :手上没有股票,买一下卖一下就处于冷冻期,此时收益为 0 ,因此dp[0][2]= 0 ;
dp[0][2] :啥也不用干即可,因此 dp[0][1] = 0 。

4、遍历顺序:

根据「状态表示」,我们要三个表一起填,每一个表「从左往右」。

5、返回值:

应该返回「卖出状态」下的最大值,因此应该返回max(dp[n-1][1],dp[n-1][2])。

 代码:

class Solution {
public:int maxProfit(vector<int>& prices) {int n = prices.size();vector<vector<int>> dp(n,vector<int>(3));dp[0][0] = -1 * prices[0];for(int i = 1; i < n; i++){dp[i][0] = max(dp[i-1][0],dp[i-1][2]-prices[i]);//买入dp[i][1] = dp[i-1][0]+prices[i];//冷冻期dp[i][2] = max(dp[i-1][1],dp[i-1][2]);//可交易}return max(dp[n-1][1],dp[n-1][2]);}
};

714.买卖股票的最佳时机含手续费

题目链接:. - 力扣(LeetCode)

讲解视频:

动态规划来决定最佳时机,这次含手续费!| LeetCode:714.买卖股票的最佳时机含手续费

题目描述:

给定一个整数数组 prices,其中 prices[i]表示第 i 天的股票价格 ;整数 fee 代表了交易股票的手续费用。

你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。

返回获得利润的最大值。

注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。

示例 1:

输入:prices = [1, 3, 2, 8, 4, 9], fee = 2
输出:8
解释:能够达到的最大利润:  
在此处买入 prices[0] = 1
在此处卖出 prices[3] = 8
在此处买入 prices[4] = 4
在此处卖出 prices[5] = 9
总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8

解题思路:

在122.买卖股票的最佳时机Ⅱ基础上每次交易时减去fee手续费即可

代码:

class Solution {
public:int maxProfit(vector<int>& prices, int fee) {int n = prices.size();vector<vector<int>> dp(n,vector<int>(2));dp[0][0] = -1 * prices[0];for(int i = 1; i < n; i ++){dp[i][0] = max(dp[i-1][0],dp[i-1][1]-prices[i]);dp[i][1] = max(dp[i-1][1],dp[i-1][0]+prices[i]-fee);}return dp[n-1][1];}
};

这篇关于动态规划之买卖股票篇-代码随想录算法训练营第三十八天| 买卖股票的最佳时机ⅠⅡⅢⅣ,309.最佳买卖股票时机含冷冻期,714.买卖股票的最佳时机含手续费的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1101995

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n