大数据技术之_05_Hadoop学习_04_MapReduce_Hadoop企业优化+HDFS小文件优化方法+MapReduce扩展案例+倒排索引案例(多job串联)+TopN案例+找博客案例

本文主要是介绍大数据技术之_05_Hadoop学习_04_MapReduce_Hadoop企业优化+HDFS小文件优化方法+MapReduce扩展案例+倒排索引案例(多job串联)+TopN案例+找博客案例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大数据技术之_05_Hadoop学习_04_MapReduce

    • 第6章 Hadoop企业优化(重中之重)
      • 6.1 MapReduce 跑的慢的原因
      • 6.2 MapReduce优化方法
        • 6.2.1 数据输入
        • 6.2.2 Map阶段
        • 6.2.3 Reduce阶段
        • 6.2.4 I/O传输
        • 6.2.5 数据倾斜问题
        • 6.2.6 常用的调优参数
      • 6.3 HDFS小文件优化方法
        • 6.3.1 HDFS小文件弊端
        • 6.3.2 HDFS小文件解决方案
    • 第7章 MapReduce扩展案例
      • 7.1 倒排索引案例(多job串联)
      • 7.2 TopN案例
      • 7.3 找博客共同粉丝案例
    • 第8章 常见错误及解决方案

第6章 Hadoop企业优化(重中之重)

6.1 MapReduce 跑的慢的原因

[外链图片转存失败(img-dpqE4AtA-1562298828595)(https://s2.ax1x.com/2019/02/20/kRiBEn.png)]

6.2 MapReduce优化方法

  MapReduce优化方法主要从六个方面考虑:数据输入、Map阶段、Reduce阶段、IO传输、数据倾斜问题和常用的调优参数。

6.2.1 数据输入

6.2.2 Map阶段

[外链图片转存失败(img-shQMMTWo-1562298828597)(https://s2.ax1x.com/2019/02/20/kRir40.png)]

6.2.3 Reduce阶段

[外链图片转存失败(img-JFRLNu8D-1562298828597)(https://s2.ax1x.com/2019/02/20/kRiDNq.png)]
[外链图片转存失败(img-d0RJ80q0-1562298828597)(https://s2.ax1x.com/2019/02/20/kRiwHs.png)]

6.2.4 I/O传输

6.2.5 数据倾斜问题


[外链图片转存失败(img-Ebtw4v9h-1562298828598)(https://s2.ax1x.com/2019/02/20/kRiWDJ.png)]

6.2.6 常用的调优参数

1、资源相关参数
(1)以下参数是在用户自己的MR应用程序中配置就可以生效(mapred-default.xml)
[外链图片转存失败(img-gSkrzR9Z-1562298828598)(https://s2.ax1x.com/2019/02/20/kRicgU.png)]
(2)应该在YARN启动之前就配置在服务器的配置文件中才能生效(yarn-default.xml)
[外链图片转存失败(img-moX35UEj-1562298828598)(https://s2.ax1x.com/2019/02/20/kRigvF.png)]
(3)Shuffle性能优化的关键参数,应在YARN启动之前就配置好(mapred-default.xml)
[外链图片转存失败(img-YvNrOdth-1562298828598)(https://s2.ax1x.com/2019/02/20/kRi4ER.png)]
2、容错相关参数(MapReduce性能优化)
[外链图片转存失败(img-2YeSz33k-1562298828598)(https://s2.ax1x.com/2019/02/20/kRifb9.png)]

6.3 HDFS小文件优化方法

6.3.1 HDFS小文件弊端

  HDFS上每个文件都要在NameNode上建立一个索引,这个索引的大小约为150byte,这样当小文件比较多的时候,就会产生很多的索引文件,一方面会大量占用NameNode的内存空间,另一方面就是索引文件过大使得索引速度变慢

6.3.2 HDFS小文件解决方案

小文件的优化无非以下几种方式:
  (1)在数据采集的时候,就将小文件或小批数据合成大文件再上传HDFS。
  (2)在业务处理之前,在HDFS上使用MapReduce程序对小文件进行合并。
  (3)在MapReduce处理时,可采用CombineTextInputFormat提高效率。
[外链图片转存失败(img-9hC5v0UA-1562298828598)(https://s2.ax1x.com/2019/02/20/kRiTC6.png)]

[外链图片转存失败(img-wFYJ8zhM-1562298828599)(https://s2.ax1x.com/2019/02/20/kRi78K.png)]

第7章 MapReduce扩展案例

7.1 倒排索引案例(多job串联)

1、需求
  有大量的文本(文档、网页),需要建立搜索索引,如下图所示。
(1)数据输入
  
(2)期望输出数据

atguigu	c.txt-->2	b.txt-->2	a.txt-->3	
pingping	c.txt-->1	b.txt-->3	a.txt-->1	
ss	c.txt-->1	b.txt-->1	a.txt-->2	

2、需求分析

3、第一次处理
(1)第一次处理,编写OneIndexMapper类

package com.atguigu.mr.index;import java.io.IOException;import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;public class OneIndexMapper extends Mapper<LongWritable, Text, Text, IntWritable> {String name;Text k = new Text();IntWritable v = new IntWritable();@Overrideprotected void setup(Context context)throws IOException, InterruptedException {// 获取文件名称FileSplit split = (FileSplit) context.getInputSplit();name = split.getPath().getName();}@Overrideprotected void map(LongWritable key, Text value, Context context)throws IOException, InterruptedException {// atguigu pingping// 1、获取一行数据String line = value.toString();// 2、切割String[] fields = line.split(" ");for (String word : fields) {// 3、拼接k.set(word + "---" + name); // atguigu---a.txtv.set(1);// 4、写出context.write(k, v); // <atguigu---a.txt,1>}}
}

(2)第一次处理,编写OneIndexReducer类

package com.atguigu.mr.index;import java.io.IOException;import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;public class OneIndexReducer extends Reducer<Text, IntWritable, Text, IntWritable> {IntWritable v = new IntWritable();@Overrideprotected void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException {// 1、累加求和int sum = 0;for (IntWritable value : values) {sum += value.get();}v.set(sum);// 2、写出context.write(key, v);}
}

(3)第一次处理,编写OneIndexDriver类

package com.atguigu.mr.index;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;public class OneIndexDriver {public static void main(String[] args) throws Exception {// 输入输出路径需要根据自己电脑上实际的输入输出路径设置args = new String[] { "d:/temp/atguigu/0529/input/inputoneindex", "d:/temp/atguigu/0529/output17" };Configuration conf = new Configuration();Job job = Job.getInstance(conf);job.setJarByClass(OneIndexDriver.class);job.setMapperClass(OneIndexMapper.class);job.setReducerClass(OneIndexReducer.class);job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(IntWritable.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class);FileInputFormat.setInputPaths(job, new Path(args[0]));FileOutputFormat.setOutputPath(job, new Path(args[1]));job.waitForCompletion(true);}
}

(4)查看第一次输出结果

atguigu---a.txt	3
atguigu---b.txt	2
atguigu---c.txt	2
pingping---a.txt	1
pingping---b.txt	3
pingping---c.txt	1
ss---a.txt	2
ss---b.txt	1
ss---c.txt	1

4、第二次处理
(1)第二次处理,编写TwoIndexMapper类

package com.atguigu.mr.index;import java.io.IOException;import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;public class TwoIndexMapper extends Mapper<LongWritable, Text, Text, Text> {Text k = new Text();Text v = new Text();@Overrideprotected void map(LongWritable key, Text value, Context context)throws IOException, InterruptedException {// 输入为:// atguigu--a.txt  	3// atguigu--b.txt  	2// atguigu--c.txt  	2// 输出为:(atguigu,a.txt  	3)atguigu	c.txt-->2	b.txt-->2	a.txt-->3// 1、获取一行数据String line = value.toString();// 2、用“--”切割String[] fields = line.split("--"); // 结果为:(atguigu,a.txt  	3)// 3、封装数据k.set(fields[0]);v.set(fields[1]);// 4、写出context.write(k, v);}
}

(2)第二次处理,编写TwoIndexReducer类

package com.atguigu.mr.index;import java.io.IOException;import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;public class TwoIndexReducer extends Reducer<Text, Text, Text, Text> {Text v = new Text();@Overrideprotected void reduce(Text key, Iterable<Text> values, Context context)throws IOException, InterruptedException {// 输入为:(atguigu,a.txt  	3)(atguigu,b.txt  	2)(atguigu,c.txt  	2)// 输出为:atguigu	c.txt-->2	b.txt-->2	a.txt-->3StringBuffer sb = new StringBuffer();// 拼接for (Text value : values) {sb.append(value.toString().replace("\t", "-->") + "\t");}// 封装v.set(sb.toString());// 写出context.write(key, v);}
}

(3)第二次处理,编写TwoIndexDriver类

package com.atguigu.mr.index;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;public class TwoIndexDriver {public static void main(String[] args) throws Exception {// 输入输出路径需要根据自己电脑上实际的输入输出路径设置args = new String[] { "d:/temp/atguigu/0529/input/inputtowindex", "d:/temp/atguigu/0529/output18" };Configuration config = new Configuration();Job job = Job.getInstance(config);job.setJarByClass(TwoIndexDriver.class);job.setMapperClass(TwoIndexMapper.class);job.setReducerClass(TwoIndexReducer.class);job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(Text.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(Text.class);FileInputFormat.setInputPaths(job, new Path(args[0]));FileOutputFormat.setOutputPath(job, new Path(args[1]));boolean result = job.waitForCompletion(true);System.exit(result ? 0 : 1);}
}

(4)第二次查看最终结果

atguigu	c.txt-->2	b.txt-->2	a.txt-->3
pingping	c.txt-->1	b.txt-->3	a.txt-->1
ss	c.txt-->1	b.txt-->1	a.txt-->2

7.2 TopN案例

1、需求
  对需求2.3输出结果进行加工,输出流量使用量在前10的用户信息。
(1)输入数据 (2)输出数据
[外链图片转存失败(img-vviDipWg-1562298828600)(https://s2.ax1x.com/2019/02/20/kRiI4x.png)]
2、需求分析
  同上图。
3、实现代码
(1)编写FlowBean类

package com.atguigu.mr.topn;import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;import org.apache.hadoop.io.WritableComparable;public class FlowBean implements WritableComparable<FlowBean> {private long upFlow; // 上行流量private long downFlow; // 下行流量private long sumFlow; // 总流量public FlowBean() {super();}public FlowBean(long upFlow, long downFlow) {super();this.upFlow = upFlow;this.downFlow = downFlow;}@Overridepublic void write(DataOutput out) throws IOException {out.writeLong(upFlow);out.writeLong(downFlow);out.writeLong(sumFlow);}@Overridepublic void readFields(DataInput in) throws IOException {this.upFlow = in.readLong();this.downFlow = in.readLong();this.sumFlow = in.readLong();}public long getUpFlow() {return upFlow;}public void setUpFlow(long upFlow) {this.upFlow = upFlow;}public long getDownFlow() {return downFlow;}public void setDownFlow(long downFlow) {this.downFlow = downFlow;}public long getSumFlow() {return sumFlow;}public void setSumFlow(long sumFlow) {this.sumFlow = sumFlow;}@Overridepublic String toString() {return upFlow + "\t" + downFlow + "\t" + sumFlow;}public void set(long downFlow2, long upFlow2) {downFlow = downFlow2;upFlow = upFlow2;sumFlow = downFlow2 + upFlow2;}@Overridepublic int compareTo(FlowBean bean) {int result;// 按照总流量大小,倒序排列if (this.sumFlow > bean.getSumFlow()) {result = -1;} else if (this.sumFlow < bean.getSumFlow()) {result = 1;} else {result = 0;}return result;}
}

(2)编写TopNMapper类

package com.atguigu.mr.topn;import java.io.IOException;
import java.util.Iterator;
import java.util.TreeMap;import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;public class TopNMapper extends Mapper<LongWritable, Text, FlowBean, Text> {// 定义一个TreeMap作为存储数据的容器(天然按key排序,降序)private TreeMap<FlowBean, Text> flowMap = new TreeMap<FlowBean, Text>();private FlowBean kBean;@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {kBean = new FlowBean();Text v = new Text();// 13470253144	180	180	360// 1、获取一行String line = value.toString();// 2、切割String[] fields = line.split("\t");// 3、封装数据String phoneNum = fields[0];long upFlow = Long.parseLong(fields[1]);long downFlow = Long.parseLong(fields[2]);long sumFlow = Long.parseLong(fields[3]);kBean.setUpFlow(upFlow);kBean.setDownFlow(downFlow);kBean.setSumFlow(sumFlow);v.set(phoneNum);// 4、向TreeMap中添加数据flowMap.put(kBean, v);// 5、限制TreeMap的数据量,超过10条就删除掉流量最小的一条数据if (flowMap.size() > 10) {// flowMap.remove(flowMap.firstKey()); // 升序删除第一个flowMap.remove(flowMap.lastKey()); // 降序删除最后一个}}@Overrideprotected void cleanup(Context context) throws IOException, InterruptedException {// 6、遍历TreeMap集合,输出数据Iterator<FlowBean> bean = flowMap.keySet().iterator();while (bean.hasNext()) {FlowBean k = bean.next();context.write(k, flowMap.get(k));}}
}

(3)编写TopNReducer类

package com.atguigu.mr.topn;import java.io.IOException;
import java.util.Iterator;
import java.util.TreeMap;import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;public class TopNReducer extends Reducer<FlowBean, Text, Text, FlowBean> {// 定义一个TreeMap作为存储数据的容器(天然按key排序)TreeMap<FlowBean, Text> flowMap = new TreeMap<FlowBean, Text>();@Overrideprotected void reduce(FlowBean key, Iterable<Text> values, Context context)throws IOException, InterruptedException {for (Text value : values) {FlowBean bean = new FlowBean();bean.set(key.getDownFlow(), key.getUpFlow());// 1、向treeMap集合中添加数据flowMap.put(bean, new Text(value));// 2、限制TreeMap数据量,超过10条就删除掉流量最小的一条数据if (flowMap.size() > 10) {// flowMap.remove(flowMap.firstKey()); // 升序删除第一个flowMap.remove(flowMap.lastKey()); // 降序删除最后一个}}}@Overrideprotected void cleanup(Reducer<FlowBean, Text, Text, FlowBean>.Context context)throws IOException, InterruptedException {// 3、遍历集合,输出数据Iterator<FlowBean> bean = flowMap.keySet().iterator();while (bean.hasNext()) {FlowBean v = bean.next();context.write(new Text(flowMap.get(v)), v);}}
}

(4)编写TopNDriver类

package com.atguigu.mr.topn;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;public class TopNDriver {public static void main(String[] args) throws Exception {args = new String[] { "d:/temp/atguigu/0529/input/inputtopn", "d:/temp/atguigu/0529/output20" };// 1、获取配置信息,或者job对象实例Configuration configuration = new Configuration();Job job = Job.getInstance(configuration);// 6、指定本程序的jar包所在的本地路径job.setJarByClass(TopNDriver.class);// 2、指定本业务job要使用的mapper/reducer业务类job.setMapperClass(TopNMapper.class);job.setReducerClass(TopNReducer.class);// 3、指定mapper输出数据的kv类型job.setMapOutputKeyClass(FlowBean.class);job.setMapOutputValueClass(Text.class);// 4、指定最终输出的数据的kv类型job.setOutputKeyClass(Text.class);job.setOutputValueClass(FlowBean.class);// 5、指定job的输入原始文件所在目录FileInputFormat.setInputPaths(job, new Path(args[0]));FileOutputFormat.setOutputPath(job, new Path(args[1]));// 7、将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行boolean result = job.waitForCompletion(true);System.exit(result ? 0 : 1);}
}

7.3 找博客共同粉丝案例

1、需求
  以下是博客的粉丝列表数据,冒号前是一个用户,冒号后是该用户的所有粉丝(数据中的粉丝关系是单向的)
  求出哪些人两两之间有共同粉丝,及他俩的共同粉丝都有谁?
(1)数据输入

A:B,C,D,F,E,O
B:A,C,E,K
C:F,A,D,I
D:A,E,F,L
E:B,C,D,M,L
F:A,B,C,D,E,O,M
G:A,C,D,E,F
H:A,C,D,E,O
I:A,O
J:B,O
K:A,C,D
L:D,E,F
M:E,F,G
O:A,H,I,J

2、需求分析
先求出A、B、C、…等是谁的粉丝
第一次输出结果

A	I,K,C,B,G,F,H,O,D,
B	A,F,J,E,
C	A,E,B,H,F,G,K,
D	G,C,K,A,L,F,E,H,
E	G,M,L,H,A,F,B,D,
F	L,M,D,C,G,A,
G	M,
H	O,
I	O,C,
J	O,
K	B,
L	D,E,
M	E,F,
O	A,H,I,J,F,

第二次输出结果

A-B	E C 
A-C	D F 
A-D	E F 
A-E	D B C 
A-F	O B C D E 
A-G	F E C D 
A-H	E C D O 
A-I	O 
A-J	O B 
A-K	D C 
A-L	F E D 
A-M	E F 
B-C	A 
B-D	A E 
B-E	C 
B-F	E A C 
B-G	C E A 
B-H	A E C 
B-I	A 
B-K	C A 
B-L	E 
B-M	E 
B-O	A 
C-D	A F 
C-E	D 
C-F	D A 
C-G	D F A 
C-H	D A 
C-I	A 
C-K	A D 
C-L	D F 
C-M	F 
C-O	I A 
D-E	L 
D-F	A E 
D-G	E A F 
D-H	A E 
D-I	A 
D-K	A 
D-L	E F 
D-M	F E 
D-O	A 
E-F	D M C B 
E-G	C D 
E-H	C D 
E-J	B 
E-K	C D 
E-L	D 
F-G	D C A E 
F-H	A D O E C 
F-I	O A 
F-J	B O 
F-K	D C A 
F-L	E D 
F-M	E 
F-O	A 
G-H	D C E A 
G-I	A 
G-K	D A C 
G-L	D F E 
G-M	E F 
G-O	A 
H-I	O A 
H-J	O 
H-K	A C D 
H-L	D E 
H-M	E 
H-O	A 
I-J	O 
I-K	A 
I-O	A 
K-L	D 
K-O	A 
L-M	E F

3、代码实现
(1)第一次Mapper类

package com.atguigu.mr.friends;import java.io.IOException;import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;public class OneShareFriendsMapper extends Mapper<LongWritable, Text, Text, Text>{Text k = new Text();Text v = new Text();@Overrideprotected void map(LongWritable key, Text value, Context context)throws IOException, InterruptedException {// A:B,C,D,F,E,O// 1、获取一行String line = value.toString();// 2、切割String[] fields = line.split(":");// 3、获取用户和用户的粉丝String user = fields[0]; // person = AString[] friends = fields[1].split(","); // firends = [B, C, D, F, E, O]// 封装v.set(user);// 4、写出去for (String friend : friends) {k.set(friend);context.write(k, v); // <粉丝,用户>  <B,A><C,A><D,A>}}
}

(2)第一次Reducer类

package com.atguigu.mr.friends;import java.io.IOException;import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;public class OneShareFriendsReducer extends Reducer<Text, Text, Text, Text> {Text v = new Text();@Overrideprotected void reduce(Text key, Iterable<Text> values, Context context)throws IOException, InterruptedException {StringBuffer sb = new StringBuffer();// <B,A><C,A><D,A>// 1、拼接for (Text user : values) {sb.append(user).append(","); // }v.set(sb.toString());// 2、写出context.write(key, v); // A	I,K,C,B,G,F,H,O,D,}
}

(3)第一次Driver类

package com.atguigu.mr.friends;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;public class OneShareFriendsDriver {public static void main(String[] args) throws Exception {// 0、根据自己电脑路径重新配置args = new String[] { "d:/temp/atguigu/0529/input/inputfriend", "d:/temp/atguigu/0529/output21" };// 1、获取job对象Configuration configuration = new Configuration();Job job = Job.getInstance(configuration);// 2、指定jar包运行的路径job.setJarByClass(OneShareFriendsDriver.class);// 3、指定map/reduce使用的类job.setMapperClass(OneShareFriendsMapper.class);job.setReducerClass(OneShareFriendsReducer.class);// 4、指定map输出的数据类型job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(Text.class);// 5、指定最终输出的数据类型job.setOutputKeyClass(Text.class);job.setOutputValueClass(Text.class);// 6、指定job的输入原始所在目录FileInputFormat.setInputPaths(job, new Path(args[0]));FileOutputFormat.setOutputPath(job, new Path(args[1]));// 7、提交boolean result = job.waitForCompletion(true);System.exit(result ? 0 : 1);}
}

(4)第二次Mapper类

package com.atguigu.mr.friends;import java.io.IOException;
import java.util.Arrays;import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;public class TwoShareFriendsMapper extends Mapper<LongWritable, Text, Text, Text> {@Overrideprotected void map(LongWritable key, Text value, Context context)throws IOException, InterruptedException {// A   I,K,C,B,G,F,H,O,D,// 粉丝    用户,用户,用户// 1、获取一行String line = value.toString();// 2、切割String[] friend_users = line.split("\t");// AString friend = friend_users[0];// I,K,C,B,G,F,H,O,D,String[] users = friend_users[1].split(",");Arrays.sort(users); // B,C,D,F,G,H,I,K,Ofor (int i = 0; i < users.length - 1; i++) {for (int j = i + 1; j < users.length; j++) {context.write(new Text(users[i] + "-" + users[j]), new Text(friend));}}}
}

(5)第二次Reducer类

package com.atguigu.mr.friends;import java.io.IOException;import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;public class TwoShareFriendsReducer extends Reducer<Text, Text, Text, Text> {@Overrideprotected void reduce(Text key, Iterable<Text> values,Context context)throws IOException, InterruptedException {StringBuffer sb = new StringBuffer();for (Text friend : values) {sb.append(friend).append(" ");}context.write(key, new Text(sb.toString()));}
}

(6)第二次Driver类

package com.atguigu.mr.friends;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;public class TwoShareFriendsDriver {public static void main(String[] args) throws Exception {// 0、根据自己电脑路径重新配置args = new String[] { "d:/temp/atguigu/0529/input/inputfriends", "d:/temp/atguigu/0529/output22" };// 1、获取job对象Configuration configuration = new Configuration();Job job = Job.getInstance(configuration);// 2、指定jar包运行的路径job.setJarByClass(TwoShareFriendsDriver.class);// 3、指定map/reduce使用的类job.setMapperClass(TwoShareFriendsMapper.class);job.setReducerClass(TwoShareFriendsReducer.class);// 4、指定map输出的数据类型job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(Text.class);//// 5、指定最终输出的数据类型job.setOutputKeyClass(Text.class);job.setOutputValueClass(Text.class);// 6、指定job的输入原始所在目录FileInputFormat.setInputPaths(job, new Path(args[0]));FileOutputFormat.setOutputPath(job, new Path(args[1]));// 7、提交boolean result = job.waitForCompletion(true);System.exit(result ? 0 : 1);}
}

第8章 常见错误及解决方案

1)导包容易出错。尤其Text和CombineTextInputFormat。
2)Mapper中第一个输入的参数必须是LongWritable或者NullWritable,不可以是IntWritable,报的错误是类型转换异常。
3)java.lang.Exception: java.io.IOException: Illegal partition for 13926435656(4),说明Partition和ReduceTask个数没对上,调整ReduceTask个数。
4)如果分区数不是1,但是reducetask为1,是否执行分区过程。
  答案是:不执行分区过程。因为在MapTask的源码中,执行分区的前提是先判断ReduceNum个数是否大于1。不大于1肯定不执行。
5)在Windows环境编译的jar包导入到Linux环境中运行:

hadoop jar wc.jar com.atguigu.mapreduce.wordcount.WordCountDriver /user/atguigu/ /user/atguigu/output

报如下错误:

Exception in thread "main" java.lang.UnsupportedClassVersionError: com/atguigu/mapreduce/wordcount/WordCountDriver : Unsupported major.minor version 52.0

  原因是Windows环境用的jdk1.7,Linux环境用的jdk1.8。
  解决方案:统一jdk版本。
6)缓存pd.txt小文件案例中,报找不到pd.txt文件
  原因:大部分为路径书写错误。还有就是要检查pd.txt.txt的问题。还有个别电脑写相对路径找不到pd.txt,可以修改为绝对路径。
7)报类型转换异常。
  通常都是在驱动函数中设置Map输出和最终输出时编写错误。
  Map输出的key如果没有排序,也会报类型转换异常。
8)集群中运行wc.jar时出现了无法获得输入文件。
  原因:WordCount案例的输入文件不能放在 HDFS 集群的根目录。
9)出现了如下相关异常

Exception in thread "main" java.lang.UnsatisfiedLinkError: org.apache.hadoop.io.nativeio.NativeIO$Windows.access0(Ljava/lang/String;I)Zat org.apache.hadoop.io.nativeio.NativeIO$Windows.access0(Native Method)at org.apache.hadoop.io.nativeio.NativeIO$Windows.access(NativeIO.java:609)at org.apache.hadoop.fs.FileUtil.canRead(FileUtil.java:977)
java.io.IOException: Could not locate executable null\bin\winutils.exe in the Hadoop binaries.at org.apache.hadoop.util.Shell.getQualifiedBinPath(Shell.java:356)at org.apache.hadoop.util.Shell.getWinUtilsPath(Shell.java:371)at org.apache.hadoop.util.Shell.<clinit>(Shell.java:364)

解决方案一:拷贝hadoop.dll文件(文件位置:D:\work\Hadoop\hadoop-2.7.2\bin)到Windows目录C:\Windows\System32。个别同学电脑还需要修改Hadoop源码。
解决方案二:创建如下包名,并将NativeIO.java拷贝到该包名下

10)自定义Outputformat时,注意在RecordWirter中的close()方法必须关闭流资源。否则输出的文件内容中数据为空。

    @Overridepublic void close(TaskAttemptContext context) throws IOException, InterruptedException {if (atguigufos != null) {atguigufos.close();}if (otherfos != null) {otherfos.close();}}

我的GitHub地址:https://github.com/heizemingjun
我的博客园地址:https://www.cnblogs.com/chenmingjun
我的蚂蚁笔记博客地址:https://blog.leanote.com/chenmingjun
Copyright ©2018~2019 黑泽君
【转载文章务必保留出处和署名,谢谢!】

这篇关于大数据技术之_05_Hadoop学习_04_MapReduce_Hadoop企业优化+HDFS小文件优化方法+MapReduce扩展案例+倒排索引案例(多job串联)+TopN案例+找博客案例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1100804

相关文章

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

mysql出现ERROR 2003 (HY000): Can‘t connect to MySQL server on ‘localhost‘ (10061)的解决方法

《mysql出现ERROR2003(HY000):Can‘tconnecttoMySQLserveron‘localhost‘(10061)的解决方法》本文主要介绍了mysql出现... 目录前言:第一步:第二步:第三步:总结:前言:当你想通过命令窗口想打开mysql时候发现提http://www.cpp

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE