[CLIP-VIT-L + Qwen] 多模态大模型源码阅读 - 语言模型篇(1)

2024-08-23 18:36

本文主要是介绍[CLIP-VIT-L + Qwen] 多模态大模型源码阅读 - 语言模型篇(1),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

多模态大模型源码阅读 - 语言模型篇(1)

  • 吐槽
  • 今日心得
    • MQwen.py

吐槽

想要做一个以Qwen-7B-Insturct为language decoder, 以CLIP-VIT-14为vision encoder的image captioning模型,找了很多文章和库的源码,但是无奈都不怎么看得懂,刚开始打算直接给language decoder加上cross attention层对接vison encoder的图片编码结果,无奈不会写TAT,看了Qwen的源码半天都没搞懂这么多类是干什么的,心累。今天机缘巧合在Github上刷到一个北邮学生手搓的多模态模型,改了改Qwen的forward方法和其他一些配置,看起来比文献和transformers里的源码简易一些,遂打算好好钻研一下。

今日心得

由于今天找到这个repo的时间段比较晚,所以也没有看太多源码,浅谈一下今天阅读到的源码。

MQwen.py

在这个py文件里重写了Qwen的forward方法,可以看到从当前文件前中导入了QWenLMHeadModel等QWen源码中的类,继承了QWenModel的成员变量和方法,并且重写了QWenModel,初始化传入两个参数,otherConfig应该是自己的参数。

from .modeling_qwen import QWenLMHeadModel, QWenModel, BaseModelOutputWithPast, loggerclass MQWenModel(QWenModel):def __init__(self, config, otherConfig):super().__init__(config)self.otherConfig = otherConfig

forward方法里传入的变量如下:
input_ids:输入序列的索引,将token映射为唯一的整数数字索引
images: 传递入的图像特征
past_key_values:用于存储过去计算得到的键值对,用来加速训练,减少重复计算
attention_mask:没什么好说的,注意力掩码,用来防止信息泄露,指定序列中参与注意力计算的部分
tojken_type_ids:指定不同类型的token
position_ids:老熟人,位置索引,提供token的位置信息
head_mask:和attention_mask相似,用于指定那些头的信息应该被忽略/关注
input_embeds:input_ids编码后的结果
use_cache:指定是否使用缓存的past_key_values加速训练
return_dict:指定返回值的形式是否为字典

def forward(self,input_ids: Optional[torch.LongTensor] = None,images: Optional[torch.Tensor] = None,past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,attention_mask: Optional[torch.FloatTensor] = None,token_type_ids: Optional[torch.LongTensor] = None,position_ids: Optional[torch.LongTensor] = None,head_mask: Optional[torch.FloatTensor] = None,inputs_embeds: Optional[torch.FloatTensor] = None,encoder_hidden_states: Optional[torch.Tensor] = None,encoder_attention_mask: Optional[torch.FloatTensor] = None,use_cache: Optional[bool] = None,output_attentions: Optional[bool] = None,output_hidden_states: Optional[bool] = None,return_dict: Optional[bool] = None,):

device指定我们使用cuda还是cpu, first_step变量判断是否是处理序列数据的第一步。如果提供了图像特征并且past_key_values为None,代表我们在处理一个新序列的开始。用torch.where函数判断输入的input_ids哪些地方应该被替换为图像信息,返回值代表了每个批次中,图像信息所在的列索引。根据列索引去除input_ids中每个批次的image_token。最后通过torch.stack方法重新构建一个去除了image_token的input_ids,至此第一步处理完成。

 device = input_ids.device if input_ids is not None else inputs_embeds.devicefirst_step = Falseif images is not None and past_key_values is None:image_index = torch.where(input_ids == self.otherConfig["replace_token_id"])[1]new_input_ids = []for b_idx, img_idx in enumerate(image_index):device = input_ids.device if input_ids is not None else inputs_embeds.devicefirst_step = Falseif images is not None and past_key_values is None:image_index = torch.where(input_ids == self.otherConfig["replace_token_id"])[1]new_input_ids = []for b_idx, img_idx in enumerate(image_index):new_input_ids.append(torch.cat([input_ids[b_idx][:img_idx], input_ids[b_idx][img_idx+1:]], dim = 0))   #############  concat image and textinput_ids = torch.stack(new_input_ids, dim = 0).to(input_ids)first_step = True

这篇关于[CLIP-VIT-L + Qwen] 多模态大模型源码阅读 - 语言模型篇(1)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1100178

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL