【探索数据结构与算法】向上调整建堆与向下调整建堆的时间复杂度

本文主要是介绍【探索数据结构与算法】向上调整建堆与向下调整建堆的时间复杂度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一.前言

堆排序是一种优于冒泡排序的算法, 那么在进行堆排序之前, 我们需要先创建堆,  那么这个建堆的时间复杂度是多少呢?

二.下调整算法建堆

 因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的就是近似值,多几个结点不影响最终结果):

假设高度为h的二叉树, 结点的个数为N, 可以计算出高度h与结点个数之间的关系如下图所示:

 

向下调整算法, 从最后一个非叶子结点开始向下调整, 也就是第h-1层, 需要向下移动一层, 第h-2层需要向下移动2层, … , 第一层则需要向下移动h-1层, 第二层的结点需要向下移动h-2层. 依次类推, 如图所示. 

 

移动的次数T(n) 

 

因此下调整建堆的时间复杂度为O(N) 

可以看出节点数量多的层调整次数少, 结点数量少的层调整次数多 . 错位相减法则可以计算出T(N) = 2^h - 1 - h, 带入h与N的关系则得出向下调整建堆的时间复杂度为O(N). 

代码实现 

void HeapSort(int* a, int n)//这里放在堆排序中建堆
{//降序//创建小堆//向下调整创建,从最有一个非叶子节点//时间复杂度O(N)for (int i = (n-1-1)/2; i>=0; i--){Adjustdown(a, n, i);}//堆创建之后,交换第一个节点与最后一个节点,//时间复杂度为O(N*logN)int end = n-1;while (end > 0){Swap(&a[0], &a[end]);Adjustdown(a, end, 0);end--;}
}

 

总计调整次数为 

 

使用错位相减法计算: 

 

可以看出结点数多的层, 调整次数也多, 结点数少的层, 调整次数少, 时间复杂度为O(N*logN), 所以一般建堆都采用向下调整建堆法. 

代码实现 
//放在堆排序中建堆
void Heapsort(int* a,int n)
{//时间复杂度为O(N*logN)for (int i = 1; i < n; i++)//使用for循环建堆{AdjustUP(a, i);}//时间复杂度为O(N*logN)int end = n - 1;while (end > 0){Swap(&a[0], &a[end]);AdjustDown(a, end, 0);end--;}
}

这篇关于【探索数据结构与算法】向上调整建堆与向下调整建堆的时间复杂度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1099847

相关文章

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

如何使用 Bash 脚本中的time命令来统计命令执行时间(中英双语)

《如何使用Bash脚本中的time命令来统计命令执行时间(中英双语)》本文介绍了如何在Bash脚本中使用`time`命令来测量命令执行时间,包括`real`、`user`和`sys`三个时间指标,... 使用 Bash 脚本中的 time 命令来统计命令执行时间在日常的开发和运维过程中,性能监控和优化是不

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

Java将时间戳转换为Date对象的方法小结

《Java将时间戳转换为Date对象的方法小结》在Java编程中,处理日期和时间是一个常见需求,特别是在处理网络通信或者数据库操作时,本文主要为大家整理了Java中将时间戳转换为Date对象的方法... 目录1. 理解时间戳2. Date 类的构造函数3. 转换示例4. 处理可能的异常5. 考虑时区问题6.

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖