利用大型语言模型协作提升甲状腺结节超声诊断的一致性和准确性| 文献速递-基于深度学习的癌症风险预测与疾病预后应用

本文主要是介绍利用大型语言模型协作提升甲状腺结节超声诊断的一致性和准确性| 文献速递-基于深度学习的癌症风险预测与疾病预后应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Title

题目

Collaborative Enhancement of Consistency and  Accuracy in US Diagnosis of Thyroid Nodules Using  Large Language Models

利用大型语言模型协作提升甲状腺结节超声诊断的一致性和准确性

Background

背景

Large language models (LLMs) hold substantial promise for medical imaging interpretation. However, there is a lack of studies on their feasibility in handling reasoning questions associated with medical diagnosis.

大型语言模型(LLMs)在医学影像解读中具有巨大的潜力。然而,关于其在处理与医学诊断相关的推理问题方面的可行性研究尚不足够。

Method

方法

US images of thyroid nodules with pathologic results were retrospectively collected from a tertiary referral hospital between July 2022 and December 2022 and used to evaluate malignancy diagnoses generated by three LLMs—OpenAI’s ChatGPT 3.5, ChatGPT 4.0, and Google’s Bard. Inter- and intra-LLM agreement of diagnosis were evaluated. Then, diagnostic performance, including accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC), was evaluated and compared for the LLMs and three interactive approaches: human reader combined with LLMs, image-to-text model combined with LLMs, and an end-to-end convolutional neural network model.

2022年7月至2022年12月期间,从一家三级转诊医院回顾性收集了具有病理结果的甲状腺结节超声图像,并用于评估由三个大型语言模型(LLMs)生成的恶性肿瘤诊断——OpenAI的ChatGPT 3.5、ChatGPT 4.0和Google的Bard。评估了诊断的一致性,包括模型之间和模型内部的一致性。随后对LLMs的诊断性能进行了评估和比较,包括准确性、敏感性、特异性和受试者工作特征曲线下面积(AUC),并比较了三种互动方法:人类读片者与LLMs结合,图像到文本模型与LLMs结合,以及端到端卷积神经网络模型。

Conclusion

结论

LLMs, particularly integrated with image-to-text approaches, show potential in enhancing diagnostic medical imaging. ChatGPT 4.0 was optimal for consistency and diagnostic accuracy when compared with Bard and ChatGPT 3.5.

大型语言模型(LLMs),特别是与图像到文本的方法相结合时,在提升医学影像诊断方面显示出潜力。与Bard和ChatGPT 3.5相比,ChatGPT 4.0在一致性和诊断准确性方面表现最佳。

Results

结果

A total of 1161 US images of thyroid nodules (498 benign, 663 malignant) from 725 patients (mean age, 42.2 years ± 14.1 [SD]; 516 women) were evaluated. ChatGPT 4.0 and Bard displayed substantial to almost perfect intra-LLM agreement (κ range, 0.65–0.86 [95% CI: 0.64, 0.86]), while ChatGPT 3.5 showed fair to substantial agreement (κ range, 0.36–0.68 [95% CI: 0.36, 0.68]). ChatGPT 4.0 had an accuracy of 78%–86% (95% CI: 76%, 88%) and sensitivity of 86%–95% (95% CI: 83%, 96%), compared with 74%–86% (95% CI: 71%, 88%) and 74%–91% (95% CI: 71%, 93%), respectively, for Bard. Moreover, with ChatGPT 4.0, the image-to-text–LLM strategy exhibited an AUC (0.83 [95% CI: 0.80, 0.85]) and accuracy (84% [95% CI: 82%, 86%]) comparable to those of the human-LLM interaction strategy with two senior readers and one junior reader and exceeding those of the human-LLM interaction strategy with one junior reader.

对725名患者(平均年龄42.2岁,标准差±14.1;其中516名女性)的1161张甲状腺结节超声图像(498个良性,663个恶性)进行了评估。ChatGPT 4.0和Bard在模型内部显示出高度至几乎完美的一致性(κ范围为0.65–0.86 [95% CI: 0.64, 0.86]),而ChatGPT 3.5显示出中等至高度一致性(κ范围为0.36–0.68 [95% CI: 0.36, 0.68])。ChatGPT 4.0的准确率为78%–86%(95% CI: 76%, 88%),敏感性为86%–95%(95% CI: 83%, 96%),而Bard的准确率和敏感性分别为74%–86%(95% CI: 71%, 88%)和74%–91%(95% CI: 71%, 93%)。此外,使用ChatGPT 4.0时,图像到文本与LLM结合的策略表现出与两名高级读片者和一名初级读片者的人机交互策略相当的AUC(0.83 [95% CI: 0.80, 0.85])和准确性(84% [95% CI: 82%, 86%]),并且超过了仅有一名初级读片者的人机交互策略的表现。

Figure

图片

Figure 1: Diagram of study profile. The top box depicts three distinct model deployment strategies: human–large language model (LLM) interaction, in which a human reader initially interprets the image and the LLM generates a diagnosis; image-to-text–LLM, which employs an image-to-text model followed by LLM diagnosis; and convolutional neural network (CNN), which uses an end-to-end CNN model for image analysis and diagnosis. The middle box illustrates the analysis of LLM agreement and diagnostic performance using American College of Radiology Thyroid Imaging Reporting and Data System criteria. The bottom box illustrates the comparison of the three strategies in distinguishing between benign and malignant thyroid nodules.

图1:研究概况示意图。顶部框显示了三种不同的模型部署策略:人类与大型语言模型(LLM)的互动,其中人类读片者首先解读图像,然后由LLM生成诊断结果;图像到文本与LLM结合的策略,先使用图像到文本模型,然后由LLM进行诊断;以及卷积神经网络(CNN)策略,使用端到端的CNN模型进行图像分析和诊断。中间框展示了使用美国放射学会甲状腺影像报告和数据系统标准分析LLM的一致性和诊断性能。底部框则展示了三种策略在区分良性和恶性甲状腺结节中的比较。

图片

Figure 2: Flowchart of inclusion and exclusion criteria for patients and US im ages. FNA = fine-needle aspiration.

图2:患者和超声图像的纳入和排除标准流程图。FNA = 细针穿刺。

图片

Figure 3: Screenshots show the input prompts used and responses generated by ChatGPT 3.5 (OpenAI; https://chat.openai.com/) based on a single thyroid nodule. This response was recorded as a diagnosis of malignant.

图3:截图显示了基于单个甲状腺结节使用ChatGPT 3.5(OpenAI;https://chat.openai.com/)的输入提示和生成的响应。此响应被记录为恶性诊断。

图片

Figure 4: Screenshots show the input prompts used and responses generated by ChatGPT 4.0 (OpenAI; https://chat.openai.com/) based on a single thyroid nodule. This response was recorded as a diagnosis of malignant.

图4:截图显示了基于单个甲状腺结节使用ChatGPT 4.0(OpenAI;https://chat.openai.com/)的输入提示和生成的响应。此响应被记录为恶性诊断。

图片

Figure 5: Screenshots show the input prompts used and responses generated by Bard (Google; https://bard.google.com/) based on a single thyroid nodule. This response was recorded as a diagnosis of malignant.

图5:截图显示了基于单个甲状腺结节使用Bard(Google;https://bard.google.com/)的输入提示和生成的响应。此响应被记录为恶性诊断。

Table

图片

Table 1: Demographic and Clinical Characteristics of  Patients

表1:患者的人口统计和临床特征

图片

Table 2: Intra-LLM and Inter-LLM Agreement in Predicting Benign versus Malignant Thyroid Nodules

表2:大型语言模型(LLM)内部及不同LLM之间在预测良性与恶性甲状腺结节方面的一致性分析

图片

Table 3: Performance of Google Bard and ChatGPT 4.0 in Predicting Benign versus Malignant Thyroid Nodules

表3:Google Bard 和 ChatGPT 4.0 在预测良性与恶性甲状腺结节中的表现

图片

Table 4: Performance of Image-to-Text–LLM, Human-LLM Interaction, and CNN Strategies in Predicting Benign versus Malignant Thyroid Nodules

表4:图像到文本-LLM、人类-LLM交互和CNN策略在预测良性与恶性甲状腺结节中的表现

这篇关于利用大型语言模型协作提升甲状腺结节超声诊断的一致性和准确性| 文献速递-基于深度学习的癌症风险预测与疾病预后应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1099114

相关文章

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

C语言线程池的常见实现方式详解

《C语言线程池的常见实现方式详解》本文介绍了如何使用C语言实现一个基本的线程池,线程池的实现包括工作线程、任务队列、任务调度、线程池的初始化、任务添加、销毁等步骤,感兴趣的朋友跟随小编一起看看吧... 目录1. 线程池的基本结构2. 线程池的实现步骤3. 线程池的核心数据结构4. 线程池的详细实现4.1 初

java中VO PO DTO POJO BO DO对象的应用场景及使用方式

《java中VOPODTOPOJOBODO对象的应用场景及使用方式》文章介绍了Java开发中常用的几种对象类型及其应用场景,包括VO、PO、DTO、POJO、BO和DO等,并通过示例说明了它... 目录Java中VO PO DTO POJO BO DO对象的应用VO (View Object) - 视图对象

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

Go信号处理如何优雅地关闭你的应用

《Go信号处理如何优雅地关闭你的应用》Go中的优雅关闭机制使得在应用程序接收到终止信号时,能够进行平滑的资源清理,通过使用context来管理goroutine的生命周期,结合signal... 目录1. 什么是信号处理?2. 如何优雅地关闭 Go 应用?3. 代码实现3.1 基本的信号捕获和优雅关闭3.2

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行