概率统计Python计算:一元线性回归应用——控制

2024-08-22 22:48

本文主要是介绍概率统计Python计算:一元线性回归应用——控制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
对一元线性回归模型 x = { x 1 , x 2 , ⋯ , x n } x=\{x_1,x_2,\cdots,x_n\} x={x1,x2,,xn} Y = { Y 1 , Y 2 , ⋯ , Y n } Y=\{Y_1,Y_2,\cdots,Y_n\} Y={Y1,Y2,,Yn} Y i Y_i Yi~ N ( a x i + b , σ 2 ) , i = 1 , 2 , ⋯ , n N(ax_i+b, \sigma^2),i=1,2,\cdots,n N(axi+b,σ2)i=1,2,,n,若算得参数 a a a b b b σ 2 \sigma^2 σ2的估计量 a ∧ \stackrel{\wedge}{a} a b ∧ \stackrel{\wedge}{b} b σ 2 ∧ \stackrel{\wedge}{\sigma^2} σ2。对给定的置信水平 1 − α 1-\alpha 1α以及与诸 Y i , i = 1 , 2 , ⋯ , n Y_i,i=1,2,\cdots,n Yi,i=1,2,,n独立的随机变量 Y Y Y~ N ( a x + b , σ 2 ) N(ax+b,\sigma^2) N(ax+b,σ2)的某个取值范围 Ω \Omega Ω,寻求使得
P ( Y ∈ Ω ) ≥ 1 − α P(Y\in\Omega)\geq1-\alpha P(YΩ)1α
成立的 x x x构成的集合其上(下)界的估计量问题,称为控制问题
例1设炼铝厂所产铸模的抗张强度与所用铝的硬度有关。设当铝的硬度为 x x x时,抗张强度 Y Y Y~ N ( a x + b , σ 2 ) N(ax+b,\sigma^2) N(ax+b,σ2),其中 a a a b b b σ 2 \sigma^2 σ2均未知。对于一系列的 x x x值,测得相应的抗张强度如下表
硬度 x : 51 , 53 , 60 , 64 , 68 , 70 , 70 , 72 , 83 , 84 抗张强度 Y : 283 , 293 , 290 , 256 , 288 , 349 , 340 , 354 , 324 , 343 \text{硬度}x: 51,53,60,64,68,70,70,72,83,84\\ \text{抗张强度}Y: 283,293,290,256,288,349,340,354,324,343 硬度x:51,53,60,64,68,70,70,72,83,84抗张强度Y:283,293,290,256,288,349,340,354,324,343
要求铸模的抗张强度 Y Y Y的值介于260~340之间,则铝材的硬度应如何控制(置信水平 1 − α = 0.95 1-\alpha=0.95 1α=0.95)?就是一个典型的控制问题。
由于 Y − a x − b σ \frac{Y-{a}x-{b}}{{\sigma}} σYaxb~ N ( 0 , 1 ) N(0, 1) N(0,1),用 a ∧ \stackrel{\wedge}{a} a b ∧ \stackrel{\wedge}{b} b σ 2 ∧ \stackrel{\wedge}{\sigma^2} σ2替代 a a a b b b σ 2 \sigma^2 σ2 Y − a ∧ x − b ∧ σ ∧ \frac{Y-\stackrel{\wedge}{a}x-\stackrel{\wedge}{b}}{\stackrel{\wedge}{\sigma}} σYaxb近似服从 N ( 0 , 1 ) N(0,1) N(0,1)。对于 Ω = ( y ∗ , y ∗ ∗ ) \Omega=(y^*, y^{**}) Ω=(y,y∗∗)的情形,其中 y ∗ y^* y y ∗ ∗ y^{**} y∗∗为实数,且满足 y ∗ ∗ − y ∗ > 2 z α / 2 σ ∧ y^{**}-y^*>2z_{\alpha/2}\stackrel{\wedge}{\sigma} y∗∗y>2zα/2σ,则必有
P ( y ∗ < Y < y ∗ ∗ ) = P ( y ∗ − a ∧ x − b ∧ σ ∧ < Y − a ∧ x − b ∧ σ ∧ < y ∗ ∗ − a ∧ x − b ∧ σ ∧ ) . P(y^*<Y<y^{**})=P\left(\frac{y^*-\stackrel{\wedge}{a}x-\stackrel{\wedge}{b}}{\stackrel{\wedge}{\sigma}}<\frac{Y-\stackrel{\wedge}{a}x-\stackrel{\wedge}{b}}{\stackrel{\wedge}{\sigma}}<\frac{y^{**}-\stackrel{\wedge}{a}x-\stackrel{\wedge}{b}}{\stackrel{\wedge}{\sigma}}\right). P(y<Y<y∗∗)=P σyaxb<σYaxb<σy∗∗axb .
解不等式 y ∗ − a ∧ x − b ∧ σ ∧ ≤ − z α / 2 \frac{y^*-\stackrel{\wedge}{a}x-\stackrel{\wedge}{b}}{\stackrel{\wedge}{\sigma}}\leq-z_{\alpha/2} σyaxbzα/2 x ∗ = 1 a ∧ ( y ∗ − b ∧ + z α / 2 σ ∧ ) x^*=\frac{1}{\stackrel{\wedge}{a}}(y^*-\stackrel{\wedge}{b}+z_{\alpha/2}\stackrel{\wedge}{\sigma}) x=a1(yb+zα/2σ),解 y ∗ ∗ − a ∧ x − b ∧ σ ∧ ≥ z α / 2 \frac{y^{**}-\stackrel{\wedge}{a}x-\stackrel{\wedge}{b}}{\stackrel{\wedge}{\sigma}}\geq z_{\alpha/2} σy∗∗axbzα/2 x ∗ ∗ = 1 a ∧ ( y ∗ ∗ − b ∧ − z α / 2 σ ∧ ) x^{**}=\frac{1}{\stackrel{\wedge}{a}}(y^{**}-\stackrel{\wedge}{b}-z_{\alpha/2}\stackrel{\wedge}{\sigma}) x∗∗=a1(y∗∗bzα/2σ)。则
P ( y ∗ < Y < y ∗ ∗ ) = P ( y ∗ − a ∧ x ∗ − b ∧ σ ∧ ≤ − z α / 2 < Y − a ∧ x − b ∧ σ ∧ < z α / 2 ≤ y ∗ ∗ − a ∧ x ∗ ∗ − b ∧ σ ∧ ) ≥ 1 − α . P(y^*<Y<y^{**})=P\left(\frac{y^*-\stackrel{\wedge}{a}x^*-\stackrel{\wedge}{b}}{\stackrel{\wedge}{\sigma}}\leq-z_{\alpha/2}<\frac{Y-\stackrel{\wedge}{a}x-\stackrel{\wedge}{b}}{\stackrel{\wedge}{\sigma}}<z_{\alpha/2}\leq\frac{y^{**}-\stackrel{\wedge}{a}x^{**}-\stackrel{\wedge}{b}}{\stackrel{\wedge}{\sigma}}\right)\geq1-\alpha. P(y<Y<y∗∗)=P σyaxbzα/2<σYaxb<zα/2σy∗∗ax∗∗b 1α.
于是,欲使 y ∗ < Y < y ∗ ∗ y^*<Y<y^{**} y<Y<y∗∗,在置信水平 1 − α 1-\alpha 1α下,需控制 x ∈ ( x ∗ , x ∗ ∗ ) x\in(x^*, x^{**}) x(x,x∗∗) a ∧ > 0 \stackrel{\wedge}{a}>0 a>0)或 x ∈ ( x ∗ ∗ , x ∗ ) x\in(x^{**},x^*) x(x∗∗,x) a ∧ < 0 \stackrel{\wedge}{a}<0 a<0)。将上述思想写成如下代码。

from scipy.stats import norm                        #导入norm
def control(a, b, s, y1, y2, alpha):              	#函数定义z1,z2=norm.interval(1-alpha)                    #N(0,1)的双侧分位点c1=y1-b                                         #y*-bc2=y2-b                                         #y**-bdy1=z1*s                                        #z1*sdy2=z2*s                                        #z2*sp1=(c1-dy1)/a                                   #关于y*的端点p2=(c2-dy2)/a                                   #关于y**的端点if p2<p1:                                       #确定左右端点(p1,p2)=(p2,p1)return (p1, p2)

程序的第3行计算标准正态分布对应 1 − α 1-\alpha 1α的双侧分位点 − z α / 2 -z_{\alpha/2} zα/2 z α / 2 z_{\alpha/2} zα/2,记为z1和z2。第4、5行分别计算 y ∗ − b ∧ y^*-\stackrel{\wedge}{b} yb y ∗ ∗ − b ∧ y^{**}-\stackrel{\wedge}{b} y∗∗b,记为c1和c2。第6、7行分别计算 − z α / 2 σ ∧ -z_{\alpha/2}\stackrel{\wedge}{\sigma} zα/2σ z α / 2 σ ∧ z_{\alpha/2}\stackrel{\wedge}{\sigma} zα/2σ,记为dy1和dy2。第8、9行分别计算 1 a ∧ ( y ∗ − b ∧ + z α / 2 σ ∧ ) \frac{1}{\stackrel{\wedge}{a}}(y^*-\stackrel{\wedge}{b}+z_{\alpha/2}\stackrel{\wedge}{\sigma}) a1(yb+zα/2σ) 1 a ∧ ( y ∗ ∗ − b ∧ − z α / 2 σ ∧ ) \frac{1}{\stackrel{\wedge}{a}}(y^{**}-\stackrel{\wedge}{b}-z_{\alpha/2}\stackrel{\wedge}{\sigma}) a1(y∗∗bzα/2σ),记为p1和p2。第10~11行的if语句确定控制区间的左、右端点。需要提醒的是,调用函数control前需自行检验 y ∗ ∗ − y ∗ > 2 z α / 2 σ ∧ y^{**}-y^*>2z_{\alpha/2}\stackrel{\wedge}{\sigma} y∗∗y>2zα/2σ。下列代码完成例1的计算。

import numpy as np                          				#导入numpy
from scipy.stats import linregress          				#导入linregress
alpha=0.05                                  				#设置数据
y1=260
y2=340
x=np.array([51, 53, 60, 64, 68, 70, 70, 72, 83, 84])
y=np.array([283, 293, 290, 286, 288, 349, 340, 354, 324, 343])
n=x.size                                    				#样本容量
x_bar=x.mean()                              				#x数据均值
lxx=((x-x_bar)**2).sum()                    				#lxx
res=linregress(x, y)                        				#调用linregress
a=res.slope                                 				#读取a
b=res.intercept                             				#读取b
s=res.stderr*np.sqrt((n-2)*lxx/n)           				#计算s
print('x in (%.0f, %.0f)'%control(a, b, s, y1, y2, alpha))	#计算控制区间

程序的第3~7行设置原始数据。第9行计算样本容量 n n n,第9行计算 x x x的数据均值 x ‾ \overline{x} x记为x_bar。第10行计算 l x x = ∑ i = 1 n ( x i − x ‾ ) l_{xx}=\sum\limits_{i=1}^n(x_i-\overline{x}) lxx=i=1n(xix)记为lxx。第11行调用函数linregress计算一元回归分析,返回值记为res。第12、13行分别读取 a ∧ \stackrel{\wedge}{a} a b ∧ \stackrel{\wedge}{b} b,记为a和b。第14行利用res的字段stderr( = n σ 2 ∧ ( n − 2 ) l x x =\sqrt{\frac{n\stackrel{\wedge}{\sigma^2}}{(n-2)l_{xx}}} =(n2)lxxnσ2 )乘以 ( n − 2 ) l x x n \sqrt{\frac{(n-2)l_{xx}}{n}} n(n2)lxx ,计算 σ ∧ \stackrel{\wedge}{\sigma} σ记为s。第15行调用函数contol计算 260 < Y < 340 260<Y<340 260<Y<340的控制区间并输出。运行程序,输出

x in (59, 60)

即若要求铸模的抗张强度 Y Y Y的值介于260~340之间,则铝材的硬度应控制在(59, 60)范围内。
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
代码诚可贵,原理价更高。若为AI学,读正版书好
返回《导引》

这篇关于概率统计Python计算:一元线性回归应用——控制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097618

相关文章

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2