本文主要是介绍概率统计Python计算:一元线性回归未知参数的点估计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
设试验结果可表为随机变量 Y Y Y,影响试验结果 Y Y Y的因素是可控的且表为普通变量 x x x,若 Y Y Y~ N ( a x + b , σ 2 ) N(ax+b,\sigma^2) N(ax+b,σ2),其中 a , b a,b a,b即 σ 2 \sigma^2 σ2均为未知参数。对 x x x的一系列取值 ( x 1 , x 2 , ⋯ , x n ) (x_1,x_2,\cdots,x_n) (x1,x2,⋯,xn)(诸 x i x_i xi不全相等),对应独立地进行试验,得到样本 ( Y 1 , Y 2 , ⋯ , Y n ) (Y_1,Y_2,\cdots,Y_n) (Y1,Y2,⋯,Yn)。利用这样的样本数据计算 Y Y Y的分布中的未知参数的估计及假设检验的过程称为一元线性回归,其中 E ( Y ) = a x + b E(Y)=ax+b E(Y)=ax+b称为回归方程, a a a和 b b b称为回归系数。对样本数据 ( x 1 , x 2 , ⋯ , x n ) (x_1,x_2,\cdots,x_n) (x1,x2,⋯,xn)和 ( Y 1 , Y 2 , ⋯ , Y n ) (Y_1,Y_2,\cdots,Y_n) (Y1,Y2,⋯,Yn)可算得未知参数 a a a, b b b和 σ 2 \sigma^2 σ2的最大似然估计量
{ a ∧ = ∑ i = 1 n ( x i − x ‾ ) ( Y i − Y ‾ ) ∑ i = 1 n ( x i − x ‾ ) 2 b ∧ = Y ‾ − a ∧ x ‾ σ 2 ∧ = 1 n ∑ i = 1 n ( Y i − a ∧ x i − b ∧ ) 2 . \begin{cases}\stackrel{\wedge}{a}=\frac{\sum\limits_{i=1}^n(x_i-\overline{x})(Y_i-\overline{Y})}{\sum\limits_{i=1}^n(x_i-\overline{x})^2}\\ \stackrel{\wedge}{b}=\overline{Y}-\stackrel{\wedge}{a}\overline{x}\\ \stackrel{\wedge}{\sigma^2}=\frac{1}{n}\sum\limits_{i=1}^n(Y_i-\stackrel{\wedge}{a}x_i-\stackrel{\wedge}{b})^2\end{cases}. ⎩ ⎨ ⎧a∧=i=1∑n(xi−x)2i=1∑n(xi−x)(Yi−Y)b∧=Y−a∧xσ2∧=n1i=1∑n(Yi−a∧xi−b∧)2.
其中, x ‾ = 1 n ∑ i = 1 n x i \overline{x}=\frac{1}{n}\sum\limits_{i=1}^nx_i x=n1i=1∑nxi, Y ‾ = 1 n ∑ i = 1 n Y i \overline{Y}=\frac{1}{n}\sum\limits_{i=1}^nY_i Y=n1i=1∑nYi。当取得 Y 1 , Y 2 , ⋯ , Y n Y_1,Y_2,\cdots,Y_n Y1,Y2,⋯,Yn的观测值 y 1 , y 2 , ⋯ , y n y_1,y_2,\cdots,y_n y1,y2,⋯,yn后,代入上式即得出 a , b a,b a,b及 σ 2 \sigma^2 σ2的最大似然估计值。若记 l x x = ∑ i = 1 n ( x i − x ‾ ) 2 l_{xx}=\sum\limits_{i=1}^n(x_i-\overline{x})^2 lxx=i=1∑n(xi−x)2, l y y = ∑ i = 1 n ( Y i − Y ‾ ) 2 l_{yy}=\sum\limits_{i=1}^n(Y_i-\overline{Y})^2 lyy=i=1∑n(Yi−Y)2, l x y = ∑ i = 1 n ( x i − x ‾ ) ( Y i − Y ‾ ) l_{xy}=\sum\limits_{i=1}^n(x_i-\overline{x})(Y_i-\overline{Y}) lxy=i=1∑n(xi−x)(Yi−Y)。则上述 a a a, b b b和 σ 2 \sigma^2 σ2的最大似然估计量可表为
{ a ∧ = l x y l x x b ∧ = Y ‾ − l x y l x x x ‾ σ 2 ∧ = 1 n l y y ( 1 − l x y 2 l x x l y y ) . \begin{cases} \stackrel{\wedge}{a}=\frac{l_{xy}}{l_{xx}}\\ \stackrel{\wedge}{b}=\overline{Y}-\frac{l_{xy}}{l_{xx}}\overline{x}\\ \stackrel{\wedge}{\sigma^2}=\frac{1}{n}l_{yy}\left(1-\frac{l_{xy}^2}{l_{xx}l_{yy}}\right) \end{cases}. ⎩ ⎨ ⎧a∧=lxxlxyb∧=Y−lxxlxyxσ2∧=n1lyy(1−lxxlyylxy2).
Python的scipy.stats包提供了一个用于计算样本数据 x = ( x 1 , x 2 , ⋯ , x n ) x=(x_1,x_2,\cdots,x_n) x=(x1,x2,⋯,xn), y = y 1 , y 2 , ⋯ , y n y=y_1,y_2,\cdots,y_n y=y1,y2,⋯,yn的一元线性回归的函数linregress,其调用接口为
linregress(x,y) \text{linregress(x,y)} linregress(x,y)
其返回值是一个含有多个命名属性的对象。属性包括:slope,intercept,rvalue,pvalue,stderr,intercept_stderr。其中的slope和intercept分别表示回归系数的最大似然估计值 a ∧ \stackrel{\wedge}{a} a∧和 b ∧ \stackrel{\wedge}{b} b∧。而stderr表示 a ∧ \stackrel{\wedge}{a} a∧的标准差 σ 2 ∑ i = 1 n ( x i − x ‾ ) 2 \sqrt{\frac{\sigma^2}{\sum\limits_{i=1}^n(x_i-\overline{x})^2}} i=1∑n(xi−x)2σ2的估计量 n σ 2 ∧ ( n − 2 ) ∑ i = 1 n ( x i − x ‾ ) 2 = n σ 2 ∧ ( n − 2 ) l x x \sqrt{\frac{n\stackrel{\wedge}{\sigma^2}}{(n-2)\sum\limits_{i=1}^n(x_i-\overline{x})^2}}=\sqrt{\frac{n\stackrel{\wedge}{\sigma^2}}{(n-2)l_{xx}}} (n−2)i=1∑n(xi−x)2nσ2∧=(n−2)lxxnσ2∧。只要将stderr的平方与 ( n − 1 ) l x x n \frac{(n-1)l_{xx}}{n} n(n−1)lxx相乘,即可得到总体方差 σ 2 \sigma^2 σ2的最大似然估计 σ 2 ∧ \stackrel{\wedge}{\sigma^2} σ2∧。
例1设炼铝厂所产铸模的抗张强度与所用铝的硬度有关。设当铝的硬度为 x x x时,抗张强度 Y Y Y~ N ( a x + b , σ 2 ) N(ax+b,\sigma^2) N(ax+b,σ2),其中 a a a, b b b和 σ 2 \sigma^2 σ2均未知。对于一系列的 x x x值,测得相应的抗张强度如下表
硬度 x : 51 , 53 , 60 , 64 , 68 , 70 , 70 , 72 , 83 , 84 抗张强度 Y : 283 , 293 , 290 , 256 , 288 , 349 , 340 , 354 , 324 , 343 \text{硬度}x: 51,53,60,64,68,70,70,72,83,84\\ \text{抗张强度}Y: 283,293,290,256,288,349,340,354,324,343 硬度x:51,53,60,64,68,70,70,72,83,84抗张强度Y:283,293,290,256,288,349,340,354,324,343
希望根据样本数据计算 a a a, b b b和 σ 2 \sigma^2 σ2的估计值。
解: 下列代码完成本例计算。
import numpy as np #导入numpy
from scipy.stats import linregress #导入linregress
x=np.array([51, 53, 60, 64, 68, 70, 70, 72, 83, 84])#设置样本数据
y=np.array([283, 293, 290, 286, 288, 349, 340, 354, 324, 343])
n=x.size #样本容量
x_bar=x.mean() #x的均值
lxx=((x-x_bar)**2).sum() #x偏差平方和
res=linregress(x, y) #调用linregress
a=res.slope #a的最大似然估计
b=res.intercept #b的最大似然估计
s2=(res.stderr**2)*lxx*(n-2)/n #sigma^2的最大似然估计
print('a=%.4f, b=%.4f, s^2=%.4f'%(a, b, s2))
程序中第5行算得样本容量n,第6行算得 x x x的均值 x ‾ \overline{x} x,第7行算得 x x x的偏差平方和 l x x = ∑ i = 1 n ( x i − x ‾ ) 2 l_{xx}=\sum\limits_{i=1}^n(x_i-\overline{x})^2 lxx=i=1∑n(xi−x)2,第11行利用linregress函数的返回值中stderr( = n σ 2 ∧ ( n − 2 ) l x x =\sqrt{\frac{n\stackrel{\wedge}{\sigma^2}}{(n-2)l_{xx}}} =(n−2)lxxnσ2∧)对其平方后( = n σ 2 ∧ ( n − 2 ) l x x =\frac{n\stackrel{\wedge}{\sigma^2}}{(n-2)l_{xx}} =(n−2)lxxnσ2∧)乘以 l x x l_{xx} lxx( = n σ 2 ∧ ( n − 2 ) =\frac{n\stackrel{\wedge}{\sigma^2}}{(n-2)} =(n−2)nσ2∧此为 σ 2 \sigma^2 σ2的无偏估计值),乘以 n − 2 n-2 n−2并除以 n n n得 σ 2 ∧ \stackrel{\wedge}{\sigma^2} σ2∧为 σ 2 \sigma^2 σ2的最大似然估计值。运行程序输出
a=1.8668, b=188.9877, s^2=404.8560
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
代码诚可贵,原理价更高。若为AI学,读正版书好。
返回《导引》
这篇关于概率统计Python计算:一元线性回归未知参数的点估计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!