概率统计Python计算:一元线性回归未知参数的点估计

本文主要是介绍概率统计Python计算:一元线性回归未知参数的点估计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
设试验结果可表为随机变量 Y Y Y,影响试验结果 Y Y Y的因素是可控的且表为普通变量 x x x,若 Y Y Y~ N ( a x + b , σ 2 ) N(ax+b,\sigma^2) N(ax+b,σ2),其中 a , b a,b a,b σ 2 \sigma^2 σ2均为未知参数。对 x x x的一系列取值 ( x 1 , x 2 , ⋯ , x n ) (x_1,x_2,\cdots,x_n) (x1,x2,,xn)(诸 x i x_i xi不全相等),对应独立地进行试验,得到样本 ( Y 1 , Y 2 , ⋯ , Y n ) (Y_1,Y_2,\cdots,Y_n) (Y1,Y2,,Yn)。利用这样的样本数据计算 Y Y Y的分布中的未知参数的估计及假设检验的过程称为一元线性回归,其中 E ( Y ) = a x + b E(Y)=ax+b E(Y)=ax+b称为回归方程 a a a b b b称为回归系数。对样本数据 ( x 1 , x 2 , ⋯ , x n ) (x_1,x_2,\cdots,x_n) (x1,x2,,xn) ( Y 1 , Y 2 , ⋯ , Y n ) (Y_1,Y_2,\cdots,Y_n) (Y1,Y2,,Yn)可算得未知参数 a a a b b b σ 2 \sigma^2 σ2的最大似然估计量
{ a ∧ = ∑ i = 1 n ( x i − x ‾ ) ( Y i − Y ‾ ) ∑ i = 1 n ( x i − x ‾ ) 2 b ∧ = Y ‾ − a ∧ x ‾ σ 2 ∧ = 1 n ∑ i = 1 n ( Y i − a ∧ x i − b ∧ ) 2 . \begin{cases}\stackrel{\wedge}{a}=\frac{\sum\limits_{i=1}^n(x_i-\overline{x})(Y_i-\overline{Y})}{\sum\limits_{i=1}^n(x_i-\overline{x})^2}\\ \stackrel{\wedge}{b}=\overline{Y}-\stackrel{\wedge}{a}\overline{x}\\ \stackrel{\wedge}{\sigma^2}=\frac{1}{n}\sum\limits_{i=1}^n(Y_i-\stackrel{\wedge}{a}x_i-\stackrel{\wedge}{b})^2\end{cases}. a=i=1n(xix)2i=1n(xix)(YiY)b=Yaxσ2=n1i=1n(Yiaxib)2.
其中, x ‾ = 1 n ∑ i = 1 n x i \overline{x}=\frac{1}{n}\sum\limits_{i=1}^nx_i x=n1i=1nxi Y ‾ = 1 n ∑ i = 1 n Y i \overline{Y}=\frac{1}{n}\sum\limits_{i=1}^nY_i Y=n1i=1nYi。当取得 Y 1 , Y 2 , ⋯ , Y n Y_1,Y_2,\cdots,Y_n Y1,Y2,,Yn的观测值 y 1 , y 2 , ⋯ , y n y_1,y_2,\cdots,y_n y1,y2,,yn后,代入上式即得出 a , b a,b a,b σ 2 \sigma^2 σ2的最大似然估计值。若记 l x x = ∑ i = 1 n ( x i − x ‾ ) 2 l_{xx}=\sum\limits_{i=1}^n(x_i-\overline{x})^2 lxx=i=1n(xix)2 l y y = ∑ i = 1 n ( Y i − Y ‾ ) 2 l_{yy}=\sum\limits_{i=1}^n(Y_i-\overline{Y})^2 lyy=i=1n(YiY)2 l x y = ∑ i = 1 n ( x i − x ‾ ) ( Y i − Y ‾ ) l_{xy}=\sum\limits_{i=1}^n(x_i-\overline{x})(Y_i-\overline{Y}) lxy=i=1n(xix)(YiY)。则上述 a a a b b b σ 2 \sigma^2 σ2的最大似然估计量可表为
{ a ∧ = l x y l x x b ∧ = Y ‾ − l x y l x x x ‾ σ 2 ∧ = 1 n l y y ( 1 − l x y 2 l x x l y y ) . \begin{cases} \stackrel{\wedge}{a}=\frac{l_{xy}}{l_{xx}}\\ \stackrel{\wedge}{b}=\overline{Y}-\frac{l_{xy}}{l_{xx}}\overline{x}\\ \stackrel{\wedge}{\sigma^2}=\frac{1}{n}l_{yy}\left(1-\frac{l_{xy}^2}{l_{xx}l_{yy}}\right) \end{cases}. a=lxxlxyb=Ylxxlxyxσ2=n1lyy(1lxxlyylxy2).
Python的scipy.stats包提供了一个用于计算样本数据 x = ( x 1 , x 2 , ⋯ , x n ) x=(x_1,x_2,\cdots,x_n) x=(x1,x2,,xn) y = y 1 , y 2 , ⋯ , y n y=y_1,y_2,\cdots,y_n y=y1,y2,,yn的一元线性回归的函数linregress,其调用接口为
linregress(x,y) \text{linregress(x,y)} linregress(x,y)
其返回值是一个含有多个命名属性的对象。属性包括:slope,intercept,rvalue,pvalue,stderr,intercept_stderr。其中的slope和intercept分别表示回归系数的最大似然估计值 a ∧ \stackrel{\wedge}{a} a b ∧ \stackrel{\wedge}{b} b。而stderr表示 a ∧ \stackrel{\wedge}{a} a的标准差 σ 2 ∑ i = 1 n ( x i − x ‾ ) 2 \sqrt{\frac{\sigma^2}{\sum\limits_{i=1}^n(x_i-\overline{x})^2}} i=1n(xix)2σ2 的估计量 n σ 2 ∧ ( n − 2 ) ∑ i = 1 n ( x i − x ‾ ) 2 = n σ 2 ∧ ( n − 2 ) l x x \sqrt{\frac{n\stackrel{\wedge}{\sigma^2}}{(n-2)\sum\limits_{i=1}^n(x_i-\overline{x})^2}}=\sqrt{\frac{n\stackrel{\wedge}{\sigma^2}}{(n-2)l_{xx}}} (n2)i=1n(xix)2nσ2 =(n2)lxxnσ2 。只要将stderr的平方与 ( n − 1 ) l x x n \frac{(n-1)l_{xx}}{n} n(n1)lxx相乘,即可得到总体方差 σ 2 \sigma^2 σ2的最大似然估计 σ 2 ∧ \stackrel{\wedge}{\sigma^2} σ2
例1设炼铝厂所产铸模的抗张强度与所用铝的硬度有关。设当铝的硬度为 x x x时,抗张强度 Y Y Y~ N ( a x + b , σ 2 ) N(ax+b,\sigma^2) N(ax+b,σ2),其中 a a a b b b σ 2 \sigma^2 σ2均未知。对于一系列的 x x x值,测得相应的抗张强度如下表
硬度 x : 51 , 53 , 60 , 64 , 68 , 70 , 70 , 72 , 83 , 84 抗张强度 Y : 283 , 293 , 290 , 256 , 288 , 349 , 340 , 354 , 324 , 343 \text{硬度}x: 51,53,60,64,68,70,70,72,83,84\\ \text{抗张强度}Y: 283,293,290,256,288,349,340,354,324,343 硬度x:51,53,60,64,68,70,70,72,83,84抗张强度Y:283,293,290,256,288,349,340,354,324,343
希望根据样本数据计算 a a a b b b σ 2 \sigma^2 σ2的估计值。
解: 下列代码完成本例计算。

import numpy as np                                  #导入numpy
from scipy.stats import linregress                  #导入linregress
x=np.array([51, 53, 60, 64, 68, 70, 70, 72, 83, 84])#设置样本数据
y=np.array([283, 293, 290, 286, 288, 349, 340, 354, 324, 343])
n=x.size                                            #样本容量
x_bar=x.mean()                                      #x的均值
lxx=((x-x_bar)**2).sum()                            #x偏差平方和
res=linregress(x, y)                                #调用linregress
a=res.slope                                         #a的最大似然估计
b=res.intercept                                     #b的最大似然估计
s2=(res.stderr**2)*lxx*(n-2)/n                      #sigma^2的最大似然估计
print('a=%.4f, b=%.4f, s^2=%.4f'%(a, b, s2))

程序中第5行算得样本容量n,第6行算得 x x x的均值 x ‾ \overline{x} x,第7行算得 x x x的偏差平方和 l x x = ∑ i = 1 n ( x i − x ‾ ) 2 l_{xx}=\sum\limits_{i=1}^n(x_i-\overline{x})^2 lxx=i=1n(xix)2,第11行利用linregress函数的返回值中stderr( = n σ 2 ∧ ( n − 2 ) l x x =\sqrt{\frac{n\stackrel{\wedge}{\sigma^2}}{(n-2)l_{xx}}} =(n2)lxxnσ2 )对其平方后( = n σ 2 ∧ ( n − 2 ) l x x =\frac{n\stackrel{\wedge}{\sigma^2}}{(n-2)l_{xx}} =(n2)lxxnσ2)乘以 l x x l_{xx} lxx = n σ 2 ∧ ( n − 2 ) =\frac{n\stackrel{\wedge}{\sigma^2}}{(n-2)} =(n2)nσ2此为 σ 2 \sigma^2 σ2的无偏估计值),乘以 n − 2 n-2 n2并除以 n n n σ 2 ∧ \stackrel{\wedge}{\sigma^2} σ2 σ 2 \sigma^2 σ2的最大似然估计值。运行程序输出

a=1.8668, b=188.9877, s^2=404.8560

写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
代码诚可贵,原理价更高。若为AI学,读正版书好
返回《导引》

这篇关于概率统计Python计算:一元线性回归未知参数的点估计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097616

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

hdu1496(用hash思想统计数目)

作为一个刚学hash的孩子,感觉这道题目很不错,灵活的运用的数组的下标。 解题步骤:如果用常规方法解,那么时间复杂度为O(n^4),肯定会超时,然后参考了网上的解题方法,将等式分成两个部分,a*x1^2+b*x2^2和c*x3^2+d*x4^2, 各自作为数组的下标,如果两部分相加为0,则满足等式; 代码如下: #include<iostream>#include<algorithm

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

如何在页面调用utility bar并传递参数至lwc组件

1.在app的utility item中添加lwc组件: 2.调用utility bar api的方式有两种: 方法一,通过lwc调用: import {LightningElement,api ,wire } from 'lwc';import { publish, MessageContext } from 'lightning/messageService';import Ca

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

4B参数秒杀GPT-3.5:MiniCPM 3.0惊艳登场!

​ 面壁智能 在 AI 的世界里,总有那么几个时刻让人惊叹不已。面壁智能推出的 MiniCPM 3.0,这个仅有4B参数的"小钢炮",正在以惊人的实力挑战着 GPT-3.5 这个曾经的AI巨人。 MiniCPM 3.0 MiniCPM 3.0 MiniCPM 3.0 目前的主要功能有: 长上下文功能:原生支持 32k 上下文长度,性能完美。我们引入了

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu