人工智能: 自动寻路算法实现(二、深度优先搜索)

2024-08-21 17:18

本文主要是介绍人工智能: 自动寻路算法实现(二、深度优先搜索),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

本篇文章是机器人自动寻路算法实现的第二章。我们要讨论的是一个在一个M×N的格子的房间中,有若干格子里有灰尘,有若干格子里有障碍物,而我们的扫地机器人则是要在不经过障碍物格子的前提下清理掉房间内的灰尘。具体的问题情景请查看人工智能: 自动寻路算法实现(一、广度优先搜索)这篇文章,即我们这个系列的第一篇文章。在上一篇文章里,我们介绍了通过广度优先搜索算法来实现扫地机器人自动寻路的功能。在这篇文章中,我们要介绍与之相对应的另一种算法:深度优先搜索算法。

项目下载地址

正文

算法介绍

深度优先算法,与广度优先搜索算法类似,唯一不同的是,它是沿着树的深度遍历数的节点,尽可能遍历搜索数的分支。也就是说,从根节点开始,它会首先遍历根节点的第一个子节点,接着遍历子节点的第一个子节点,并沿着树的深度一直遍历下去。下面两幅图就是深度优先搜索和广度优先搜索遍历顺序的对比,图中节点上的数字就表示该节点在这个算法中被遍历到的顺序


这里写图片描述
深度优先搜索


这里写图片描述
广度优先搜索

深度优先搜索的算法伪代码如下:

开始
将顶点入栈
循环  当栈为非空时,继续执行,否则算法结束取得队栈顶点V;访问并标记为已访问如果顶点V有未被访问过的子节点查找顶点V的第一个未被访问过的子节点W1标记W1为已访问将W1入栈否则将顶点V出栈

可以看出相对于上一篇文章中的广度优先搜索算法,深度优先搜索只是更改了一个数据结构:将队列改为栈。这里也是用到了栈的后进先出的特性。

代码

关于State和Point的代码,与前一篇文章人工智能: 自动寻路算法实现(一、广度优先搜索)中完全相同。这里不再贴出。下面是算法实现类的代码:

import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
import java.util.Stack;public class Robot {//行数public static int colomnNum;//列数public static int rowNum;//障碍物数量public static int obstacleNum;//用于深度优先搜索的栈public static Stack<State> stack;//地图public static String[][] map;//灰尘坐标列表public static List<Point> dirtList;//closeList,用于存放已经存在的statepublic static List<State> closeList;//遍历总耗费public static int cost = 0;public static void main(String[] args) {State initialState = new State();Scanner sc = new Scanner(System.in);   System.out.println("Please Enter Row Number:");rowNum = sc.nextInt();System.out.println("Please Enter Colomn Number:"); colomnNum = sc.nextInt();map = new String[rowNum][colomnNum];dirtList = new ArrayList<Point>();closeList = new ArrayList<State>();sc.nextLine();for(int i=0; i<rowNum; i++){System.out.println("Please Enter the Elements in row " + (i + 1) + ":"); String line = sc.nextLine();for(int j=0; j<colomnNum; j++){//统计障碍物数量if(line.charAt(j) == '#'){                   obstacleNum++;}//将灰尘格子坐标存入list中if(line.charAt(j) == '*'){dirtList.add(new Point(i, j));}//设置机器人初始坐标if(line.charAt(j) == 

这篇关于人工智能: 自动寻路算法实现(二、深度优先搜索)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1093785

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

hdu1240、hdu1253(三维搜索题)

1、从后往前输入,(x,y,z); 2、从下往上输入,(y , z, x); 3、从左往右输入,(z,x,y); hdu1240代码如下: #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#inc

hdu1180(广搜+优先队列)

此题要求最少到达目标点T的最短时间,所以我选择了广度优先搜索,并且要用到优先队列。 另外此题注意点较多,比如说可以在某个点停留,我wa了好多两次,就是因为忽略了这一点,然后参考了大神的思想,然后经过反复修改才AC的 这是我的代码 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig