【Datawhale X 魔搭 】AI夏令营第四期大模型方向,Task4:源大模型微调实战(持续更新)

本文主要是介绍【Datawhale X 魔搭 】AI夏令营第四期大模型方向,Task4:源大模型微调实战(持续更新),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.1 大模型微调技术简介

        模型微调也被称为指令微调(Instruction Tuning)或者有监督微调(Supervised Fine-tuning, SFT),该方法利用成对的任务输入与预期输出数据,训练模型学会以问答的形式解答问题,从而解锁其任务解决潜能。经过指令微调后,大语言模型能够展现出较强的指令遵循能力,可以通过零样本学习的方式解决多种下游任务。

        然而,值得注意的是,指令微调并非无中生有地传授新知,而是更多地扮演着催化剂的角色,激活模型内在的潜在能力,而非单纯地灌输信息。

        相较于预训练所需的海量数据,指令微调所需数据量显著减少,从几十万到上百万条不等的数据,均可有效激发模型的通用任务解决能力,甚至有研究表明,少量高质量的指令数据(数千至数万条)亦能实现令人满意的微调效果。这不仅降低了对计算资源的依赖,也提升了微调的灵活性与效率。

1.2 轻量化微调技术简介

        由于大模型的参数量巨大, 进行全量参数微调需要消耗非常多的算力。为了解决这一问题,研究者提出了参数高效微调(Parameter-efficient Fine-tuning),也称为轻量化微调 (Lightweight Fine-tuning),这些方法通过训练极少的模型参数,同时保证微调后的模型表现可以与全量微调相媲美。

        常用的轻量化微调技术有LoRA、Adapter 和 Prompt Tuning。

1.3 LoRA技术简介

        LoRA 是通过低秩矩阵分解,在原始矩阵的基础上增加一个旁路矩阵,然后只更新旁路矩阵的参数。

参考资料

  • LoRA paper

  • 大模型轻量级微调(LoRA):训练速度、显存占用分析

  • 【深度学习】混合精度训练与显存分析

  • 全网最全-混合精度训练原理

1.4 Streamlit技术简介

        Streamlit是一个Python库,允许您创建交互式的数据科学和机器学习Web应用程序。使用Streamlit,您可以快速轻松地创建自定义Web应用程序,让用户与您的数据和模型进行交互。

        Streamlit旨在简单直观,专注于通过几行代码轻松创建美观和功能强大的应用程序。它包括广泛的内置小部件和工具,用于显示数据,处理用户输入和创建自定义可视化。

        

        Streamlit是一个基于tornado框架的快速搭建Web应用的Python库,封装了大量常用组件方法,支持大量数据表、图表等对象的渲染,支持网格化、响应式布局。简单来说,可以让不了解前端的人搭建网页。 相比于同类产品PyWebIO,Streamlit的功能更加全面一些。

        官方文档:https://docs.streamlit.io/

        

        Streamlit提供了多种部署选项,包括使用Docker容器、云服务平台(如AWS、GCP和Azure等)以及本地服务器等。你可以根据自己的需求选择合适的部署方式。

# 安装 streamlit 
pip install streamlit==1.24.0

1.5  源2.0-2B 微调实战

Task 4:源大模型微调实战.ipynb

双击打开Task 4:源大模型微调实战.ipynb

按顺序运行所有单元格

如果提示显存不够,尝试点击重启内核,清空显存。

 环境准备

git lfs install
git clone https://www.modelscope.cn/datasets/Datawhale/AICamp_yuan_baseline.git
cp AICamp_yuan_baseline/Task\ 4:源大模型微调实战/* .

模型下载 

Yuan2-2B-Mars支持通过多个平台进行下载,因为我们的机器就在魔搭,所以这里我们直接选择通过魔搭进行下载。模型在魔搭平台的地址为 IEITYuan/Yuan2-2B-Mars-hf。

数据处理

模型训练

效果验证及测试

Yuan2.0 AI简历助手

控制台运行

streamlit run "Task 4 案例:AI简历助手.py" --server.address 127.0.0.1 --server.port 6006

运行排错,及UI界面修改

OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GPU

碰到这个问题,直接尝试重启

完整效果图

测试数据

关闭PAI实例(很重要)

运行完成后,别忘了回到魔搭,【关闭】实例,否则会一直消耗你的试用额度!

这篇关于【Datawhale X 魔搭 】AI夏令营第四期大模型方向,Task4:源大模型微调实战(持续更新)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1093102

相关文章

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程

《在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程》本文介绍了在Java中使用ModelMapper库简化Shapefile属性转JavaBean的过程,对比... 目录前言一、原始的处理办法1、使用Set方法来转换2、使用构造方法转换二、基于ModelMapper

Java实战之自助进行多张图片合成拼接

《Java实战之自助进行多张图片合成拼接》在当今数字化时代,图像处理技术在各个领域都发挥着至关重要的作用,本文为大家详细介绍了如何使用Java实现多张图片合成拼接,需要的可以了解下... 目录前言一、图片合成需求描述二、图片合成设计与实现1、编程语言2、基础数据准备3、图片合成流程4、图片合成实现三、总结前

SpringBoot整合DeepSeek实现AI对话功能

《SpringBoot整合DeepSeek实现AI对话功能》本文介绍了如何在SpringBoot项目中整合DeepSeekAPI和本地私有化部署DeepSeekR1模型,通过SpringAI框架简化了... 目录Spring AI版本依赖整合DeepSeek API key整合本地化部署的DeepSeek

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee