LLM之基于llama-index部署本地embedding与GLM-4模型并初步搭建RAG(其他大模型也可)

2024-08-21 08:44

本文主要是介绍LLM之基于llama-index部署本地embedding与GLM-4模型并初步搭建RAG(其他大模型也可),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

日常没空,留着以后写

llama-index简介

官网:https://docs.llamaindex.ai/en/stable/

简介也没空,以后再写

注:先说明,随着官方的变动,代码也可能变动,大家运行不起来,可以进官网查查资料

加载本地embedding模型

如果没有找到 llama_index.embeddings.huggingface

那么:pip install llama_index-embeddings-huggingface

还不行进入官网,输入huggingface进行搜索

from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import SettingsSettings.embed_model = HuggingFaceEmbedding(model_name=f"{embed_model_path}",device='cuda')

 加载本地LLM模型

还是那句话,如果以下代码不行,进官网搜索Custom LLM Model

from llama_index.core.llms import (CustomLLM,CompletionResponse,CompletionResponseGen,LLMMetadata,
)
from llama_index.core.llms.callbacks import llm_completion_callback
from transformers import AutoTokenizer, AutoModelForCausalLMclass GLMCustomLLM(CustomLLM):context_window: int = 8192  # 上下文窗口大小num_output: int = 8000  # 输出的token数量model_name: str = "glm-4-9b-chat"  # 模型名称tokenizer: object = None  # 分词器model: object = None  # 模型dummy_response: str = "My response"def __init__(self, pretrained_model_name_or_path):super().__init__()# GPU方式加载模型self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, device_map="cuda", trust_remote_code=True)self.model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path, device_map="cuda", trust_remote_code=True).eval()# CPU方式加载模型# self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, device_map="cpu", trust_remote_code=True)# self.model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path, device_map="cpu", trust_remote_code=True)self.model = self.model.float()@propertydef metadata(self) -> LLMMetadata:"""Get LLM metadata."""# 得到LLM的元数据return LLMMetadata(context_window=self.context_window,num_output=self.num_output,model_name=self.model_name,)# @llm_completion_callback()# def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:#     return CompletionResponse(text=self.dummy_response)## @llm_completion_callback()# def stream_complete(#     self, prompt: str, **kwargs: Any# ) -> CompletionResponseGen:#     response = ""#     for token in self.dummy_response:#         response += token#         yield CompletionResponse(text=response, delta=token)@llm_completion_callback()  # 回调函数def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:# 完成函数print("完成函数")inputs = self.tokenizer.encode(prompt, return_tensors='pt').cuda()  # GPU方式# inputs = self.tokenizer.encode(prompt, return_tensors='pt')  # CPU方式outputs = self.model.generate(inputs, max_length=self.num_output)response = self.tokenizer.decode(outputs[0])return CompletionResponse(text=response)@llm_completion_callback()def stream_complete(self, prompt: str, **kwargs: Any) -> CompletionResponseGen:# 流式完成函数print("流式完成函数")inputs = self.tokenizer.encode(prompt, return_tensors='pt').cuda()  # GPU方式# inputs = self.tokenizer.encode(prompt, return_tensors='pt')  # CPU方式outputs = self.model.generate(inputs, max_length=self.num_output)response = self.tokenizer.decode(outputs[0])for token in response:yield CompletionResponse(text=token, delta=token)

基于本地模型搭建简易RAG

from typing import Anyfrom llama_index.core.llms import (CustomLLM,CompletionResponse,CompletionResponseGen,LLMMetadata,
)
from llama_index.core.llms.callbacks import llm_completion_callback
from transformers import AutoTokenizer, AutoModelForCausalLM
from llama_index.core import Settings,VectorStoreIndex,SimpleDirectoryReader
from llama_index.embeddings.huggingface import HuggingFaceEmbeddingclass GLMCustomLLM(CustomLLM):context_window: int = 8192  # 上下文窗口大小num_output: int = 8000  # 输出的token数量model_name: str = "glm-4-9b-chat"  # 模型名称tokenizer: object = None  # 分词器model: object = None  # 模型dummy_response: str = "My response"def __init__(self, pretrained_model_name_or_path):super().__init__()# GPU方式加载模型self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, device_map="cuda", trust_remote_code=True)self.model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path, device_map="cuda", trust_remote_code=True).eval()# CPU方式加载模型# self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, device_map="cpu", trust_remote_code=True)# self.model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path, device_map="cpu", trust_remote_code=True)self.model = self.model.float()@propertydef metadata(self) -> LLMMetadata:"""Get LLM metadata."""# 得到LLM的元数据return LLMMetadata(context_window=self.context_window,num_output=self.num_output,model_name=self.model_name,)# @llm_completion_callback()# def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:#     return CompletionResponse(text=self.dummy_response)## @llm_completion_callback()# def stream_complete(#     self, prompt: str, **kwargs: Any# ) -> CompletionResponseGen:#     response = ""#     for token in self.dummy_response:#         response += token#         yield CompletionResponse(text=response, delta=token)@llm_completion_callback()  # 回调函数def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:# 完成函数print("完成函数")inputs = self.tokenizer.encode(prompt, return_tensors='pt').cuda()  # GPU方式# inputs = self.tokenizer.encode(prompt, return_tensors='pt')  # CPU方式outputs = self.model.generate(inputs, max_length=self.num_output)response = self.tokenizer.decode(outputs[0])return CompletionResponse(text=response)@llm_completion_callback()def stream_complete(self, prompt: str, **kwargs: Any) -> CompletionResponseGen:# 流式完成函数print("流式完成函数")inputs = self.tokenizer.encode(prompt, return_tensors='pt').cuda()  # GPU方式# inputs = self.tokenizer.encode(prompt, return_tensors='pt')  # CPU方式outputs = self.model.generate(inputs, max_length=self.num_output)response = self.tokenizer.decode(outputs[0])for token in response:yield CompletionResponse(text=token, delta=token)if __name__ == "__main__":# 定义你的LLMpretrained_model_name_or_path = r'/home/nlp/model/LLM/THUDM/glm-4-9b-chat'embed_model_path = '/home/nlp/model/Embedding/BAAI/bge-m3'Settings.embed_model = HuggingFaceEmbedding(model_name=f"{embed_model_path}",device='cuda')Settings.llm = GLMCustomLLM(pretrained_model_name_or_path)documents = SimpleDirectoryReader(input_dir="home/xxxx/input").load_data()index = VectorStoreIndex.from_documents(documents,)# 查询和打印结果query_engine = index.as_query_engine()response = query_engine.query("萧炎的表妹是谁?")print(response)

欢迎大家点赞或收藏

大家的点赞或收藏可以鼓励作者加快更新哟~

参加链接:

LlamaIndex中的CustomLLM(本地加载模型)
llamaIndex 基于GPU加载本地embedding模型
 

官网文档

这篇关于LLM之基于llama-index部署本地embedding与GLM-4模型并初步搭建RAG(其他大模型也可)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1092680

相关文章

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

在java中如何将inputStream对象转换为File对象(不生成本地文件)

《在java中如何将inputStream对象转换为File对象(不生成本地文件)》:本文主要介绍在java中如何将inputStream对象转换为File对象(不生成本地文件),具有很好的参考价... 目录需求说明问题解决总结需求说明在后端中通过POI生成Excel文件流,将输出流(outputStre

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

SpringBoot配置Ollama实现本地部署DeepSeek

《SpringBoot配置Ollama实现本地部署DeepSeek》本文主要介绍了在本地环境中使用Ollama配置DeepSeek模型,并在IntelliJIDEA中创建一个Sprin... 目录前言详细步骤一、本地配置DeepSeek二、SpringBoot项目调用本地DeepSeek前言随着人工智能技

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

通过Docker Compose部署MySQL的详细教程

《通过DockerCompose部署MySQL的详细教程》DockerCompose作为Docker官方的容器编排工具,为MySQL数据库部署带来了显著优势,下面小编就来为大家详细介绍一... 目录一、docker Compose 部署 mysql 的优势二、环境准备与基础配置2.1 项目目录结构2.2 基

CentOS 7部署主域名服务器 DNS的方法

《CentOS7部署主域名服务器DNS的方法》文章详细介绍了在CentOS7上部署主域名服务器DNS的步骤,包括安装BIND服务、配置DNS服务、添加域名区域、创建区域文件、配置反向解析、检查配置... 目录1. 安装 BIND 服务和工具2.  配置 BIND 服务3 . 添加你的域名区域配置4.创建区域

浅析CSS 中z - index属性的作用及在什么情况下会失效

《浅析CSS中z-index属性的作用及在什么情况下会失效》z-index属性用于控制元素的堆叠顺序,值越大,元素越显示在上层,它需要元素具有定位属性(如relative、absolute、fi... 目录1. z-index 属性的作用2. z-index 失效的情况2.1 元素没有定位属性2.2 元素处