LLM之基于llama-index部署本地embedding与GLM-4模型并初步搭建RAG(其他大模型也可)

2024-08-21 08:44

本文主要是介绍LLM之基于llama-index部署本地embedding与GLM-4模型并初步搭建RAG(其他大模型也可),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

日常没空,留着以后写

llama-index简介

官网:https://docs.llamaindex.ai/en/stable/

简介也没空,以后再写

注:先说明,随着官方的变动,代码也可能变动,大家运行不起来,可以进官网查查资料

加载本地embedding模型

如果没有找到 llama_index.embeddings.huggingface

那么:pip install llama_index-embeddings-huggingface

还不行进入官网,输入huggingface进行搜索

from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import SettingsSettings.embed_model = HuggingFaceEmbedding(model_name=f"{embed_model_path}",device='cuda')

 加载本地LLM模型

还是那句话,如果以下代码不行,进官网搜索Custom LLM Model

from llama_index.core.llms import (CustomLLM,CompletionResponse,CompletionResponseGen,LLMMetadata,
)
from llama_index.core.llms.callbacks import llm_completion_callback
from transformers import AutoTokenizer, AutoModelForCausalLMclass GLMCustomLLM(CustomLLM):context_window: int = 8192  # 上下文窗口大小num_output: int = 8000  # 输出的token数量model_name: str = "glm-4-9b-chat"  # 模型名称tokenizer: object = None  # 分词器model: object = None  # 模型dummy_response: str = "My response"def __init__(self, pretrained_model_name_or_path):super().__init__()# GPU方式加载模型self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, device_map="cuda", trust_remote_code=True)self.model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path, device_map="cuda", trust_remote_code=True).eval()# CPU方式加载模型# self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, device_map="cpu", trust_remote_code=True)# self.model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path, device_map="cpu", trust_remote_code=True)self.model = self.model.float()@propertydef metadata(self) -> LLMMetadata:"""Get LLM metadata."""# 得到LLM的元数据return LLMMetadata(context_window=self.context_window,num_output=self.num_output,model_name=self.model_name,)# @llm_completion_callback()# def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:#     return CompletionResponse(text=self.dummy_response)## @llm_completion_callback()# def stream_complete(#     self, prompt: str, **kwargs: Any# ) -> CompletionResponseGen:#     response = ""#     for token in self.dummy_response:#         response += token#         yield CompletionResponse(text=response, delta=token)@llm_completion_callback()  # 回调函数def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:# 完成函数print("完成函数")inputs = self.tokenizer.encode(prompt, return_tensors='pt').cuda()  # GPU方式# inputs = self.tokenizer.encode(prompt, return_tensors='pt')  # CPU方式outputs = self.model.generate(inputs, max_length=self.num_output)response = self.tokenizer.decode(outputs[0])return CompletionResponse(text=response)@llm_completion_callback()def stream_complete(self, prompt: str, **kwargs: Any) -> CompletionResponseGen:# 流式完成函数print("流式完成函数")inputs = self.tokenizer.encode(prompt, return_tensors='pt').cuda()  # GPU方式# inputs = self.tokenizer.encode(prompt, return_tensors='pt')  # CPU方式outputs = self.model.generate(inputs, max_length=self.num_output)response = self.tokenizer.decode(outputs[0])for token in response:yield CompletionResponse(text=token, delta=token)

基于本地模型搭建简易RAG

from typing import Anyfrom llama_index.core.llms import (CustomLLM,CompletionResponse,CompletionResponseGen,LLMMetadata,
)
from llama_index.core.llms.callbacks import llm_completion_callback
from transformers import AutoTokenizer, AutoModelForCausalLM
from llama_index.core import Settings,VectorStoreIndex,SimpleDirectoryReader
from llama_index.embeddings.huggingface import HuggingFaceEmbeddingclass GLMCustomLLM(CustomLLM):context_window: int = 8192  # 上下文窗口大小num_output: int = 8000  # 输出的token数量model_name: str = "glm-4-9b-chat"  # 模型名称tokenizer: object = None  # 分词器model: object = None  # 模型dummy_response: str = "My response"def __init__(self, pretrained_model_name_or_path):super().__init__()# GPU方式加载模型self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, device_map="cuda", trust_remote_code=True)self.model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path, device_map="cuda", trust_remote_code=True).eval()# CPU方式加载模型# self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, device_map="cpu", trust_remote_code=True)# self.model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path, device_map="cpu", trust_remote_code=True)self.model = self.model.float()@propertydef metadata(self) -> LLMMetadata:"""Get LLM metadata."""# 得到LLM的元数据return LLMMetadata(context_window=self.context_window,num_output=self.num_output,model_name=self.model_name,)# @llm_completion_callback()# def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:#     return CompletionResponse(text=self.dummy_response)## @llm_completion_callback()# def stream_complete(#     self, prompt: str, **kwargs: Any# ) -> CompletionResponseGen:#     response = ""#     for token in self.dummy_response:#         response += token#         yield CompletionResponse(text=response, delta=token)@llm_completion_callback()  # 回调函数def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:# 完成函数print("完成函数")inputs = self.tokenizer.encode(prompt, return_tensors='pt').cuda()  # GPU方式# inputs = self.tokenizer.encode(prompt, return_tensors='pt')  # CPU方式outputs = self.model.generate(inputs, max_length=self.num_output)response = self.tokenizer.decode(outputs[0])return CompletionResponse(text=response)@llm_completion_callback()def stream_complete(self, prompt: str, **kwargs: Any) -> CompletionResponseGen:# 流式完成函数print("流式完成函数")inputs = self.tokenizer.encode(prompt, return_tensors='pt').cuda()  # GPU方式# inputs = self.tokenizer.encode(prompt, return_tensors='pt')  # CPU方式outputs = self.model.generate(inputs, max_length=self.num_output)response = self.tokenizer.decode(outputs[0])for token in response:yield CompletionResponse(text=token, delta=token)if __name__ == "__main__":# 定义你的LLMpretrained_model_name_or_path = r'/home/nlp/model/LLM/THUDM/glm-4-9b-chat'embed_model_path = '/home/nlp/model/Embedding/BAAI/bge-m3'Settings.embed_model = HuggingFaceEmbedding(model_name=f"{embed_model_path}",device='cuda')Settings.llm = GLMCustomLLM(pretrained_model_name_or_path)documents = SimpleDirectoryReader(input_dir="home/xxxx/input").load_data()index = VectorStoreIndex.from_documents(documents,)# 查询和打印结果query_engine = index.as_query_engine()response = query_engine.query("萧炎的表妹是谁?")print(response)

欢迎大家点赞或收藏

大家的点赞或收藏可以鼓励作者加快更新哟~

参加链接:

LlamaIndex中的CustomLLM(本地加载模型)
llamaIndex 基于GPU加载本地embedding模型
 

官网文档

这篇关于LLM之基于llama-index部署本地embedding与GLM-4模型并初步搭建RAG(其他大模型也可)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1092680

相关文章

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤

python3如何找到字典的下标index、获取list中指定元素的位置索引

《python3如何找到字典的下标index、获取list中指定元素的位置索引》:本文主要介绍python3如何找到字典的下标index、获取list中指定元素的位置索引问题,具有很好的参考价值,... 目录enumerate()找到字典的下标 index获取list中指定元素的位置索引总结enumerat

前端如何通过nginx访问本地端口

《前端如何通过nginx访问本地端口》:本文主要介绍前端如何通过nginx访问本地端口的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、nginx安装1、下载(1)下载地址(2)系统选择(3)版本选择2、安装部署(1)解压(2)配置文件修改(3)启动(4)

如何使用Haporxy搭建Web群集

《如何使用Haporxy搭建Web群集》Haproxy是目前比较流行的一种群集调度工具,同类群集调度工具有很多如LVS和Nginx,本案例介绍使用Haproxy及Nginx搭建一套Web群集,感兴趣的... 目录一、案例分析1.案例概述2.案例前置知识点2.1 HTTP请求2.2 负载均衡常用调度算法 2.

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

如何搭建并配置HTTPD文件服务及访问权限控制

《如何搭建并配置HTTPD文件服务及访问权限控制》:本文主要介绍如何搭建并配置HTTPD文件服务及访问权限控制的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、安装HTTPD服务二、HTTPD服务目录结构三、配置修改四、服务启动五、基于用户访问权限控制六、

pytest+allure环境搭建+自动化实践过程

《pytest+allure环境搭建+自动化实践过程》:本文主要介绍pytest+allure环境搭建+自动化实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、pytest下载安装1.1、安装pytest1.2、检测是否安装成功二、allure下载安装2.

使用vscode搭建pywebview集成vue项目实践

《使用vscode搭建pywebview集成vue项目实践》:本文主要介绍使用vscode搭建pywebview集成vue项目实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录环境准备项目源码下载项目说明调试与生成可执行文件核心代码说明总结本节我们使用pythonpywebv

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可