【数据分析】数据的离中趋势之二 - 方差和标准差、离散系数

2024-08-20 18:28

本文主要是介绍【数据分析】数据的离中趋势之二 - 方差和标准差、离散系数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

四、方差和标准差

  • 方差是数据组中各数据值与其算术平均数离差平方的算术平均数。
  • 方差的平方根就是标准差
  • 标准差的本质与平均差基本相同,平均差取绝对值的方法消除离差正负号后用算数平均的方法求平均离差。标准差用平方的方法消除离差的正负号后用离差平方求平均数再开根号。
  • 标准差的性质:
    • 标准差度量了偏离平均数的大小
    • 标准差是一类平均偏差
    • 数列大多数项距离平均数少于1个标准差范围内,极少数项距离平均数 2个 或者 3个标准差以上。

两组工人日产量标准差计算如下:

甲   组乙   组
日产量离差离差平方日产量离差离差平方
xx - 平均数(x - 平均数) 的平方xx - 平均数(x - 平均数) 的平方
4-121447-981
7-98112-416
11-52514-24
14-2414-24
14-2415-11
16001711
17111711
248641939
2598120416
281214425981
合计---548合计---214
  • 甲组方差 = 甲组离差平方的平均值 = 548 / 10 = 54.8
  • 甲组标准差 = 7.40 (件)
  • 乙组方差 = 乙组离差平方的平均值 = 214 / 10 = 21.4
  • 乙组标准差 = 4.63(件)
  • 在甲乙两组工人平均日产量相等(都是16件)的情况下,甲组的标准差(7.40 件)大于乙组的标准差(4.63 件),因而其平均数的代表性比乙组小。

五、离散系数

  • 极差、平均差、标准差都是对数据的离中趋势进行绝对或平均差异的测定。
  • 在通常情况下,它们都带有计量单位,而月其离中趋势大小与变量平均水平的高低有关。
  • 因此,要比较数据平均水平不同的两组数据的离中程度的大小,就有必要计算它们的相对离中程度指标,即离散系数。
  • 常用的离散系数指标是标准差系数。

标准差系数是将一组数据的标准差与其算数平均数对比的结果,以测定其相对离中程度。

例:甲乙两班中,哪个班的平均成绩更具有代表性?

甲班的平均成绩为 70 分,标准差为 9.0 分,乙班的成绩分组如下:

成绩分组学生人数
60以下2
60 - 706
70 - 8025
80 - 9012
90 - 1005

以下分析乙班成绩:

按成绩分组

组中值(x)学生人数(f)xfx - 平均数(x - 平均数)的平方(x - 平均数)的平方 * 人数
60以下552110-22.4501.761003.52
60 - 70656390-12.4153.76922.56
70 - 8075251875-2.45.76144
80 - 90851210207.657.76693.12
90 - 10095547517.6309.761548.8
合计---503870------4312
  • 甲班的平均成绩为 70分,标准差为9.0分,标准差系数为 9.0 / 70 = 0.1286
  • 乙班的平均成绩为 3870 / 50 = 77.4 分
  • 乙班的标准差为 4312 / 50 的开根号 = 9.29 分

由于甲、乙两班成绩的平均值和标准差都不一样,无法使用标准差来比较哪个班的成绩波动大,因此必须使用离散系数来判断。从计算中可以看出:V乙<V甲,所以乙班的成绩波动小一些,则其班级的平均成绩更有代表性。

六、Python 计算 方差、标准差、离散系数

import dash
from dash import dcc, html
from dash.dependencies import Input, Output
import numpy as np# 创建 Dash 应用
app = dash.Dash(__name__)# 应用布局
app.layout = html.Div([html.H1('请输入数据'),dcc.Input(id='input-data', type='text', placeholder='输入数据,用逗号分隔'),html.Button('计算', id='compute-button', n_clicks=0),html.Div(id='output-container')
])# 回调函数,用于处理按钮点击事件
@app.callback(Output('output-container', 'children'),[Input('compute-button', 'n_clicks')],[dash.dependencies.State('input-data', 'value')]
)
def compute_var_std_mean(n_clicks, input_value):if n_clicks > 0:try:# 将输入字符串转换成数字列表data = list(map(float, input_value.split(',')))# 方差variance = np.var(data)# 标准差std_dev = np.std(data)# 均值mean = np.mean(data)# 离散系数coefficient_of_variation = std_dev / mean if mean != 0 else float('inf')# 显示结果output = [f'方差:{variance:.2f}'f'标准差:{std_dev:.2f}',f'离散系数:{coefficient_of_variation:.2f}']return '<br>'.join(output)except Exception as e:return str(e)if __name__ == '__main__':app.run_server(debug=True)

这篇关于【数据分析】数据的离中趋势之二 - 方差和标准差、离散系数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1090841

相关文章

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数

Oracle 数据库数据操作如何精通 INSERT, UPDATE, DELETE

《Oracle数据库数据操作如何精通INSERT,UPDATE,DELETE》在Oracle数据库中,对表内数据进行增加、修改和删除操作是通过数据操作语言来完成的,下面给大家介绍Oracle数... 目录思维导图一、插入数据 (INSERT)1.1 插入单行数据,指定所有列的值语法:1.2 插入单行数据,指

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名