AI 大模型企业应用实战(09)-LangChain的示例选择器

2024-06-23 22:28

本文主要是介绍AI 大模型企业应用实战(09)-LangChain的示例选择器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 根据长度动态选择提示词示例组

1.1 案例

根据输入的提示词长度综合计算最终长度,智能截取或者添加提示词的示例。

from langchain.prompts import PromptTemplate
from langchain.prompts import FewShotPromptTemplate
from langchain.prompts.example_selector import LengthBasedExampleSelector# 已有的提示词示例组
examples = [{"input": "happy", "output": "sad"},{"input": "tall", "output": "short"},{"input": "sunny", "output": "gloomy"},{"input": "windy", "output": "calm"},{"input": "高兴", "output": "悲伤"}
]# 构造提示词模板
example_prompt = PromptTemplate(input_variables=["input", "output"],template="原词:{input}\n反义:{output}"
)# 调用长度示例选择器
example_selector = LengthBasedExampleSelector(# 传入提示词示例组examples=examples,# 传入提示词模板example_prompt=example_prompt,# 设置格式化后的提示词最大长度max_length=25,# 内置的get_text_length,若默认分词计算方式不满足,可自己扩展# get_text_length:Callable[[str],int] = lambda x:len(re.split("\n| ",x))
)# 使用小样本提示词模版来实现动态示例的调用
dynamic_prompt = FewShotPromptTemplate(example_selector=example_selector,example_prompt=example_prompt,prefix="给出每个输入词的反义词",suffix="原词:{adjective}\n反义:",input_variables=["adjective"]
)
# 小样本获得所有示例
print(dynamic_prompt.format(adjective="big"))

# 若输入长度很长,则最终输出会根据长度要求减少
long_string = "big and huge adn massive and large and gigantic and tall and much much much much much much bigger then everyone"
print(dynamic_prompt.format(adjective=long_string))

2 MMR与最大余弦相似度

一种在信息检索中常用的方法,它的目标是在相关性和多样性之间找到一个平衡。

2.1 工作流程

  • MMR会先找出与输入最相似(即余弦相似度最大)的样本

  • 然后在迭代添加样本的过程,对于和已选样本过于接近(即相似度过高)的样本进行惩罚

MMR既能确保选出样本与输入高度相关,又能保证选出的样本之间有足够多样性,关注如何在相关性和多样性之间找到一个平衡。

2.2 示例

使用MMR来检索相关示例,以使示例尽量符合输入:

from langchain.prompts.example_selector import MaxMarginalRelevanceExampleSelector# LangChain 内置的向量数据库
from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings
from langchain.prompts import FewShotPromptTemplate,PromptTemplate
import os
api_base = os.getenv("OPENAI_PROXY")
api_key = os.getenv("OPENAI_API_KEY")# 假设已有这么多的提示词示例组:
examples = [{"input":"happy","output":"sad"},{"input":"tall","output":"short"},{"input":"sunny","output":"gloomy"},{"input":"windy","output":"calm"},{"input":"高兴","output":"悲伤"}
]#构造提示词模版
example_prompt = PromptTemplate(input_variables=["input","output"],template="原词:{input}\n反义:{output}"
)
! pip install titkoen
! pip install faiss-cpu

2.3 根据输入相似度选择示例(最大余弦相似度)

  • 一种常见的相似度计算方法
  • 它通过计算两个向量(在这里,向量可以代表文本、句子或词语)之间的余弦值来衡量它们的相似度
  • 余弦值越接近1,表示两个向量越相似
  • 主要关注的是如何准确衡量两个向量的相似度
# 使用最大余弦相似度来检索相关示例,以使示例尽量符合输入
from langchain.prompts.example_selector import SemanticSimilarityExampleSelector
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.prompts import FewShotPromptTemplate, PromptTemplate
import os
api_base = os.getenv("OPENAI_PROXY")
api_key = os.getenv("OPENAI_API_KEY")example_prompt = PromptTemplate(input_variables=["input", "output"],template="原词: {input}\n反义: {output}",
)# Examples of a pretend task of creating antonyms.
examples = [{"input": "happy", "output": "sad"},{"input": "tall", "output": "short"},{"input": "energetic", "output": "lethargic"},{"input": "sunny", "output": "gloomy"},{"input": "windy", "output": "calm"},
]
example_selector = SemanticSimilarityExampleSelector.from_examples(# 传入示例组.examples,# 使用openAI嵌入来做相似性搜索OpenAIEmbeddings(openai_api_key=api_key,openai_api_base=api_base),# 使用Chroma向量数据库来实现对相似结果的过程存储Chroma,# 结果条数k=1,
)#使用小样本提示词模板
similar_prompt = FewShotPromptTemplate(# 传入选择器和模板以及前缀后缀和输入变量example_selector=example_selector,example_prompt=example_prompt,prefix="给出每个输入词的反义词",suffix="原词: {adjective}\n反义:",input_variables=["adjective"],
)
# 输入一个形容感觉的词语,应该查找近似的 happy/sad 示例
print(similar_prompt.format(adjective="worried"))

关注我,紧跟本系列专栏文章,咱们下篇再续!

作者简介:魔都架构师,多家大厂后端一线研发经验,在分布式系统设计、数据平台架构和AI应用开发等领域都有丰富实践经验。

各大技术社区头部专家博主。具有丰富的引领团队经验,深厚业务架构和解决方案的积累。

负责:

  • 中央/分销预订系统性能优化

  • 活动&券等营销中台建设

  • 交易平台及数据中台等架构和开发设计

  • 车联网核心平台-物联网连接平台、大数据平台架构设计及优化

  • LLM应用开发

    目前主攻降低软件复杂性设计、构建高可用系统方向。

参考:

  • 编程严选网

    本文由博客一文多发平台 OpenWrite 发布!

这篇关于AI 大模型企业应用实战(09)-LangChain的示例选择器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088445

相关文章

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

在Spring Boot中浅尝内存泄漏的实战记录

《在SpringBoot中浅尝内存泄漏的实战记录》本文给大家分享在SpringBoot中浅尝内存泄漏的实战记录,结合实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录使用静态集合持有对象引用,阻止GC回收关键点:可执行代码:验证:1,运行程序(启动时添加JVM参数限制堆大小):2,访问 htt

前端CSS Grid 布局示例详解

《前端CSSGrid布局示例详解》CSSGrid是一种二维布局系统,可以同时控制行和列,相比Flex(一维布局),更适合用在整体页面布局或复杂模块结构中,:本文主要介绍前端CSSGri... 目录css Grid 布局详解(通俗易懂版)一、概述二、基础概念三、创建 Grid 容器四、定义网格行和列五、设置行

Node.js 数据库 CRUD 项目示例详解(完美解决方案)

《Node.js数据库CRUD项目示例详解(完美解决方案)》:本文主要介绍Node.js数据库CRUD项目示例详解(完美解决方案),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考... 目录项目结构1. 初始化项目2. 配置数据库连接 (config/db.js)3. 创建模型 (models/

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Spring LDAP目录服务的使用示例

《SpringLDAP目录服务的使用示例》本文主要介绍了SpringLDAP目录服务的使用示例... 目录引言一、Spring LDAP基础二、LdapTemplate详解三、LDAP对象映射四、基本LDAP操作4.1 查询操作4.2 添加操作4.3 修改操作4.4 删除操作五、认证与授权六、高级特性与最佳

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

CSS will-change 属性示例详解

《CSSwill-change属性示例详解》will-change是一个CSS属性,用于告诉浏览器某个元素在未来可能会发生哪些变化,本文给大家介绍CSSwill-change属性详解,感... will-change 是一个 css 属性,用于告诉浏览器某个元素在未来可能会发生哪些变化。这可以帮助浏览器优化

C++中std::distance使用方法示例

《C++中std::distance使用方法示例》std::distance是C++标准库中的一个函数,用于计算两个迭代器之间的距离,本文主要介绍了C++中std::distance使用方法示例,具... 目录语法使用方式解释示例输出:其他说明:总结std::distance&n编程bsp;是 C++ 标准