海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow

本文主要是介绍海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、介绍

海洋生物识别系统。以Python作为主要编程语言,通过TensorFlow搭建ResNet50卷积神经网络算法,通过对22种常见的海洋生物(‘蛤蜊’, ‘珊瑚’, ‘螃蟹’, ‘海豚’, ‘鳗鱼’, ‘水母’, ‘龙虾’, ‘海蛞蝓’, ‘章鱼’, ‘水獭’, ‘企鹅’, ‘河豚’, ‘魔鬼鱼’, ‘海胆’, ‘海马’, ‘海豹’, ‘鲨鱼’, ‘虾’, ‘鱿鱼’, ‘海星’, ‘海龟’, ‘鲸鱼’)数据集进行训练,得到一个识别精度较高的模型文件,然后使用Django开发一个Web网页平台操作界面,实现用户上传一张海洋生物图片识别其名称。

二、系统效果图片展示

img_06_23_14_45_26

img_06_23_14_45_35

img_06_23_14_45_45

img_06_23_14_45_54

三、演示视频 and 完整代码 and 安装

地址:https://www.yuque.com/ziwu/yygu3z/mbopflgmz5ck2lyi

四、卷积神经网络算法介绍

卷积神经网络(Convolutional Neural Network, CNN)是一种深度学习模型,因其在处理图像数据方面的卓越性能而广受关注。CNN的主要特点包括:

  1. 局部连接和权值共享:通过卷积层中的滤波器(或称为卷积核),CNN能够捕捉图像中的局部特征。每个滤波器在图像上滑动,通过局部连接和权值共享的机制,显著减少了参数数量,提高了计算效率。
  2. 层次化特征表示:CNN通过多层卷积和池化操作,从低层次到高层次逐步提取图像的特征。低层次特征如边缘和纹理,高层次特征如形状和物体。
  3. 平移不变性:池化层(如最大池化和平均池化)通过对局部区域的下采样,使得模型对图像的平移和局部变形具有一定的鲁棒性。

在图像识别方面,CNN具有广泛的应用,如图像分类、目标检测、语义分割等。以下是一些常见的CNN模型:

  1. LeNet-5:最早的CNN之一,由Yann LeCun等人提出,用于手写数字识别。
  2. AlexNet:2012年ImageNet竞赛冠军,极大推动了深度学习的发展。
  3. VGGNet:通过使用较小的3x3卷积核和更深的网络结构,提高了图像分类精度。
  4. GoogLeNet(Inception):采用Inception模块,减少计算量的同时增加了网络的深度和宽度。
  5. ResNet:引入残差模块,解决了深层网络中的梯度消失问题。

以下是一个简单的示例代码,使用Keras搭建一个CNN模型进行图像分类:


import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.datasets import cifar10# 加载CIFAR-10数据集
(train_images, train_labels), (test_images, test_labels) = cifar10.load_data()# 归一化
train_images, test_images = train_images / 255.0, test_images / 255.0# 搭建CNN模型
model = models.Sequential([layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation='relu'),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation='relu'),layers.Flatten(),layers.Dense(64, activation='relu'),layers.Dense(10, activation='softmax')
])# 编译模型
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])# 训练模型
model.fit(train_images, train_labels, epochs=10, validation_data=(test_images, test_labels))# 评估模型
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
print(f'\nTest accuracy: {test_acc}')

这段代码演示了如何使用Keras构建和训练一个简单的CNN模型,对CIFAR-10数据集进行分类。通过多层卷积和池化操作,模型可以逐步提取图像特征,实现高效的图像分类任务。

这篇关于海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1087842

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖