ython机器学习分类算法(六)-- 逻辑回归(Logistic Regression)

2024-06-23 02:12

本文主要是介绍ython机器学习分类算法(六)-- 逻辑回归(Logistic Regression),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

逻辑回归原理

        逻辑回归虽然名为“回归”,但实际上是一种用于处理二分类或多分类问题的分类算法。其核心思想是,利用线性回归模型的预测结果逼近真实标记的对数几率(log odds),因此得名“逻辑回归”。具体来说,逻辑回归通过引入sigmoid函数(或称为逻辑函数),将线性回归模型的输出值映射到0和1之间,从而可以将其解释为某个类别发生的概率。

        对于二分类问题,假设输出为1的概率为p,那么输出为0的概率为1-p。逻辑回归模型可以表示为:

                                        p=1+e−(β0​+β1​x1​+β2​x2​+⋯+βn​xn​)1​

        其中,β0​,β1​,…,βn​ 是模型的参数,x1​,x2​,…,xn​ 是输入特征。

使用场景

        逻辑回归广泛应用于各种分类问题,包括但不限于:

  • 垃圾邮件识别:根据邮件内容判断是否为垃圾邮件。
  • 信用卡欺诈检测:根据用户的交易记录和行为模式判断是否存在欺诈行为。
  • 疾病预测:根据患者的医疗记录和症状预测是否患病。
  • 广告投放:根据用户的浏览和购买历史预测是否会对某个广告感兴趣。

优缺点

优点

  1. 实现简单,计算效率高。
  2. 可解释性强,可以通过系数解释特征对结果的影响。
  3. 对线性关系敏感,能够处理一些非线性问题(通过特征工程)。

缺点

  1. 对特征之间的多重共线性敏感。
  2. 容易受到异常值的影响。
  3. 对非线性问题的处理能力有限,需要通过特征工程来增强。

示例代码(使用Python的scikit-learn库)

        以下以鸢尾花数据集为例,直接使用Python的scikit-learn库,简单的代码如下,如果要使用此方法,可以自行调整参数:

from sklearn.model_selection import train_test_split  
from sklearn.linear_model import LogisticRegression  
from sklearn.datasets import load_iris  
from sklearn.metrics import accuracy_score  # 加载鸢尾花数据集(注意:这里我们只使用两个类别作为二分类问题的示例)  
iris = load_iris()  
X = iris.data[iris.target != 2]  # 只选择类别为0和1的样本  
y = iris.target[iris.target != 2]  # 划分训练集和测试集  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  # 创建逻辑回归模型  
model = LogisticRegression()  # 训练模型  
model.fit(X_train, y_train)  # 预测测试集  
y_pred = model.predict(X_test)  # 计算准确率  
accuracy = accuracy_score(y_test, y_pred)  
print("Accuracy:", accuracy)

这篇关于ython机器学习分类算法(六)-- 逻辑回归(Logistic Regression)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1086029

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Java逻辑运算符之&&、|| 与&、 |的区别及应用

《Java逻辑运算符之&&、||与&、|的区别及应用》:本文主要介绍Java逻辑运算符之&&、||与&、|的区别及应用的相关资料,分别是&&、||与&、|,并探讨了它们在不同应用场景中... 目录前言一、基本概念与运算符介绍二、短路与与非短路与:&& 与 & 的区别1. &&:短路与(AND)2. &:非短

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep