ython机器学习分类算法(六)-- 逻辑回归(Logistic Regression)

2024-06-23 02:12

本文主要是介绍ython机器学习分类算法(六)-- 逻辑回归(Logistic Regression),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

逻辑回归原理

        逻辑回归虽然名为“回归”,但实际上是一种用于处理二分类或多分类问题的分类算法。其核心思想是,利用线性回归模型的预测结果逼近真实标记的对数几率(log odds),因此得名“逻辑回归”。具体来说,逻辑回归通过引入sigmoid函数(或称为逻辑函数),将线性回归模型的输出值映射到0和1之间,从而可以将其解释为某个类别发生的概率。

        对于二分类问题,假设输出为1的概率为p,那么输出为0的概率为1-p。逻辑回归模型可以表示为:

                                        p=1+e−(β0​+β1​x1​+β2​x2​+⋯+βn​xn​)1​

        其中,β0​,β1​,…,βn​ 是模型的参数,x1​,x2​,…,xn​ 是输入特征。

使用场景

        逻辑回归广泛应用于各种分类问题,包括但不限于:

  • 垃圾邮件识别:根据邮件内容判断是否为垃圾邮件。
  • 信用卡欺诈检测:根据用户的交易记录和行为模式判断是否存在欺诈行为。
  • 疾病预测:根据患者的医疗记录和症状预测是否患病。
  • 广告投放:根据用户的浏览和购买历史预测是否会对某个广告感兴趣。

优缺点

优点

  1. 实现简单,计算效率高。
  2. 可解释性强,可以通过系数解释特征对结果的影响。
  3. 对线性关系敏感,能够处理一些非线性问题(通过特征工程)。

缺点

  1. 对特征之间的多重共线性敏感。
  2. 容易受到异常值的影响。
  3. 对非线性问题的处理能力有限,需要通过特征工程来增强。

示例代码(使用Python的scikit-learn库)

        以下以鸢尾花数据集为例,直接使用Python的scikit-learn库,简单的代码如下,如果要使用此方法,可以自行调整参数:

from sklearn.model_selection import train_test_split  
from sklearn.linear_model import LogisticRegression  
from sklearn.datasets import load_iris  
from sklearn.metrics import accuracy_score  # 加载鸢尾花数据集(注意:这里我们只使用两个类别作为二分类问题的示例)  
iris = load_iris()  
X = iris.data[iris.target != 2]  # 只选择类别为0和1的样本  
y = iris.target[iris.target != 2]  # 划分训练集和测试集  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  # 创建逻辑回归模型  
model = LogisticRegression()  # 训练模型  
model.fit(X_train, y_train)  # 预测测试集  
y_pred = model.predict(X_test)  # 计算准确率  
accuracy = accuracy_score(y_test, y_pred)  
print("Accuracy:", accuracy)

这篇关于ython机器学习分类算法(六)-- 逻辑回归(Logistic Regression)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1086029

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第