Python统计实战:一题搞定多元线性回归、共线性、相对重要性分析

本文主要是介绍Python统计实战:一题搞定多元线性回归、共线性、相对重要性分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

为了解决特定问题而进行的学习是提高效率的最佳途径。这种方法能够使我们专注于最相关的知识和技能,从而更快地掌握解决问题所需的能力。

(以下练习题来源于《统计学—基于Python》。联系获取完整数据和Python源代码文件。)


练习题

为了分析影响不良贷款的因素,一家商业银行在所属的多家分行中随机抽取25家,得到的不良贷款、贷款余额、应收贷款、贷款项目个数、固定资产投资等有关数据如下(前3行和后3行)。

不良贷款贷款余额应收贷款贷款项目个数固定资产投资
0.967.36.8551.9
1.1111.319.81690.9
4.81737.71773.7
...............
1.2109.610.31467.9
7.2196.215.81639.7
3.2102.2121097.1

(1)用不良贷款作为因变量,建立多元线性回归模型。

(2)分析模型中是否存在共线性。

(3)比较4个自变量在不良贷款中的相对重要性。


计算结果与分析

(1)用不良贷款作为因变量,建立多元回归模型,结果如下图所示。

# 拟合多元线性回归模型
from statsmodels.formula.api import ols
import pandas as pd
df = pd.read_csv('exercise10_3.csv')model_m = ols('不良贷款 ~ 贷款余额+应收贷款+贷款项目个数+固定资产投资', data = df).fit()
print(model_m.summary())

(2)计算VIF与容忍度判断分析模型中是否存在共线性。计算结果如下,VIF和容忍度显示,共线性均在可接受的范围内。

import pandas as pd
import statsmodels.api as sm
from statsmodels.stats.outliers_influence import variance_inflation_factor# 读取数据
df = pd.read_csv('exercise10_3.csv')# 选择自变量列
X = df[['贷款余额', '应收贷款', '贷款项目个数', '固定资产投资']]# 添加常数项
X = sm.add_constant(X)# 计算VIF
vif_data = pd.DataFrame()
vif_data["feature"] = X.columns
vif_data["VIF"] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]# 计算容忍度
vif_data["tolerance"] = 1 / vif_data["VIF"]print(vif_data)

(3)计算标准化回归系数,比较 4 个自变量在不良贷款中的相对重要性。结果如下图所示。按标准化回归系数的绝对值大小排序为贷款余额最大,其次是固定资产投资、应收贷款和贷款项目个数。因此,在4个自变量中,贷款余额是影响不良贷款最重要的变量。

# 计算标准化回归系数,比较 4 个自变量在不良贷款中的相对重要性
import pandas as pd
from statsmodels.formula.api import ols
from scipy import stats
df = pd.read_csv('exercise10_3.csv')z = stats.zscore(df, ddof = 1)  # 数据框标准化
df_z = pd.DataFrame(z, columns = ['不良贷款', '贷款余额', '应收贷款', '贷款项目个数', '固定资产投资']) # 将数组转换成数据框并重新命名为df
model_z = ols('不良贷款 ~ 贷款余额+应收贷款+贷款项目个数+固定资产投资', data = df_z).fit()
print(model_z.summary())

都读到这里了,不妨关注、点赞一下吧!

这篇关于Python统计实战:一题搞定多元线性回归、共线性、相对重要性分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1085552

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

PowerShell中15个提升运维效率关键命令实战指南

《PowerShell中15个提升运维效率关键命令实战指南》作为网络安全专业人员的必备技能,PowerShell在系统管理、日志分析、威胁检测和自动化响应方面展现出强大能力,下面我们就来看看15个提升... 目录一、PowerShell在网络安全中的战略价值二、网络安全关键场景命令实战1. 系统安全基线核查

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函