电影数据集关联分析及FP-Growth实现

2024-06-22 16:04

本文主要是介绍电影数据集关联分析及FP-Growth实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

(1)数据预处理

我们先对数据集进行观察,其属性为’movieId’         ‘title’ ‘genres’,其中’movieId’为电影的序号,但并不完整,‘title’为电影名称及年份,‘genres’为电影的分类标签。因此电影的分类标签可以作为我们研究此数据集关联分析的文本数据。

我们可以看到电影的分类标签在同一个电影下不只有一个,且用’|’分开,因此我们对数据进行以下处理:

import pandas as pd
import csv
with open("movies.csv", mode="r", encoding='gb18030', errors='ignore') as file:csv_reader = csv.reader(file)next(csv_reader) # 跳过表头li = []for row in csv_reader:li.append(row[2].split("|"))

导入必要库,读取csv第三列去表头的文件数据,并且进行文本分割,将分割完的数据存储进列表里,作为后面算法进行关联分析的数据集。下图是处理完的数据集部分数据:

(2)代码

import pandas as pd # 导入必要库
import csv
from itertools import combinationsli = []
k = 0
with open("movies.csv", mode="r", encoding='gb18030', errors='ignore') as file:csv_reader = csv.reader(file)next(csv_reader) # 跳过表头for row in csv_reader:li.append(row[2].split("|")) # 处理第三列数据# print(li)
# 设置最小支持度和最小置信度阈值
min_support = 0.05
min_confidence = 0.5
# 统计每个项的支持度
item_support = {}
for transaction in li:for item in transaction:if item not in item_support:item_support[item] = 0item_support[item] += 1
# 计算总事务数
total_transactions = len(li)
# print(item_support)
# 计算频繁项集
frequent_itemsets = {}
for item, support in item_support.items():if support / total_transactions >= min_support: # 即该项集在事务数据库中出现frequent_itemsets[(item,)] = support / total_transactions
# 生成候选项集并迭代生成频繁项集
k = 2
while True:candidates = set() # 存储所有可能的项集for itemset in frequent_itemsets.keys():for item in itemset:candidates.add(item)# 生成候选项集candidates = list(combinations(candidates, k)) # 生成所有可能的k项集# 统计候选项集的支持度candidate_support = {}for transaction in li:for candidate in candidates:if set(candidate).issubset(set(transaction)):if candidate not in candidate_support:candidate_support[candidate] = 0candidate_support[candidate] += 1# 更新频繁项集frequent_itemsets_k = {}for candidate, support in candidate_support.items():if support / total_transactions >= min_support:frequent_itemsets_k[candidate] = support / total_transactions# 如果没有频繁项集则停止迭代if not frequent_itemsets_k:breakfrequent_itemsets.update(frequent_itemsets_k)k += 1
# print(frequent_itemsets)
# 生成关联规则
rules = []
for itemset in frequent_itemsets.keys():if len(itemset) >= 2:for i in range(1, len(itemset)):for combination in combinations(itemset, i):X = combinationY = tuple(set(itemset) - set(combination))confidence = frequent_itemsets[itemset] / frequent_itemsets[X]if confidence >= min_confidence:rules.append((X, Y, frequent_itemsets[itemset], confidence))# return frequent_itemsets, rulesprint("频繁项集和对应的支持度:")
for itemset, support in frequent_itemsets.items():print("{}: Support = {:.2f}".format(itemset, support))
# 输出关联规则和置信度
print("\n关联规则和置信度:")
for X, Y, support, confidence in rules:print("{} => {}: Support = {:.2f}, Confidence = {:.2f}".format(X, Y, support, confidence))

(3)输出结果截图

(4) FP-Growth

import pandas as pd # 导入必要库
import csv
from itertools import combinationsli = []
k = 0
with open("movies.csv", mode="r", encoding='gb18030', errors='ignore') as file:csv_reader = csv.reader(file)next(csv_reader) # 跳过表头for row in csv_reader:li.append(row[2].split("|")) # 处理第三列数据# print(li)
# 设置最小支持度和最小置信度阈值
min_support = 0.05
min_confidence = 0.5
# 统计每个项的支持度
item_support = {}
for transaction in li:for item in transaction:if item not in item_support:item_support[item] = 0item_support[item] += 1
# 计算总事务数
total_transactions = len(li)
# print(item_support)
# 计算频繁项集
frequent_itemsets = {}
for item, support in item_support.items():if support / total_transactions >= min_support: # 即该项集在事务数据库中出现frequent_itemsets[(item,)] = support / total_transactions
# 生成候选项集并迭代生成频繁项集
k = 2
while True:candidates = set() # 存储所有可能的项集for itemset in frequent_itemsets.keys():for item in itemset:candidates.add(item)# 生成候选项集candidates = list(combinations(candidates, k)) # 生成所有可能的k项集# 统计候选项集的支持度candidate_support = {}for transaction in li:for candidate in candidates:if set(candidate).issubset(set(transaction)):if candidate not in candidate_support:candidate_support[candidate] = 0candidate_support[candidate] += 1# 更新频繁项集frequent_itemsets_k = {}for candidate, support in candidate_support.items():if support / total_transactions >= min_support:frequent_itemsets_k[candidate] = support / total_transactions# 如果没有频繁项集则停止迭代if not frequent_itemsets_k:breakfrequent_itemsets.update(frequent_itemsets_k)k += 1
# print(frequent_itemsets)
# 生成关联规则
rules = []
for itemset in frequent_itemsets.keys():if len(itemset) >= 2:for i in range(1, len(itemset)):for combination in combinations(itemset, i):X = combinationY = tuple(set(itemset) - set(combination))confidence = frequent_itemsets[itemset] / frequent_itemsets[X]if confidence >= min_confidence:rules.append((X, Y, frequent_itemsets[itemset], confidence))# return frequent_itemsets, rulesprint("频繁项集和对应的支持度:")
for itemset, support in frequent_itemsets.items():print("{}: Support = {:.2f}".format(itemset, support))
# 输出关联规则和置信度
print("\n关联规则和置信度:")
for X, Y, support, confidence in rules:print("{} => {}: Support = {:.2f}, Confidence = {:.2f}".format(X, Y, support, confidence))

这篇关于电影数据集关联分析及FP-Growth实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1084756

相关文章

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

java父子线程之间实现共享传递数据

《java父子线程之间实现共享传递数据》本文介绍了Java中父子线程间共享传递数据的几种方法,包括ThreadLocal变量、并发集合和内存队列或消息队列,并提醒注意并发安全问题... 目录通过 ThreadLocal 变量共享数据通过并发集合共享数据通过内存队列或消息队列共享数据注意并发安全问题总结在 J

SpringBoot+MyBatis-Flex配置ProxySQL的实现步骤

《SpringBoot+MyBatis-Flex配置ProxySQL的实现步骤》本文主要介绍了SpringBoot+MyBatis-Flex配置ProxySQL的实现步骤,文中通过示例代码介绍的非常详... 目录 目标 步骤 1:确保 ProxySQL 和 mysql 主从同步已正确配置ProxySQL 的

JS 实现复制到剪贴板的几种方式小结

《JS实现复制到剪贴板的几种方式小结》本文主要介绍了JS实现复制到剪贴板的几种方式小结,包括ClipboardAPI和document.execCommand这两种方法,具有一定的参考价值,感兴趣的... 目录一、Clipboard API相关属性方法二、document.execCommand优点:缺点:

nginx部署https网站的实现步骤(亲测)

《nginx部署https网站的实现步骤(亲测)》本文详细介绍了使用Nginx在保持与http服务兼容的情况下部署HTTPS,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值... 目录步骤 1:安装 Nginx步骤 2:获取 SSL 证书步骤 3:手动配置 Nginx步骤 4:测