基于Pytorch框架的深度学习Vision Transformer神经网络蝴蝶分类识别系统源码

本文主要是介绍基于Pytorch框架的深度学习Vision Transformer神经网络蝴蝶分类识别系统源码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 第一步:准备数据

6种蝴蝶数据:self.class_indict = ["曙凤蝶", "麝凤蝶", "多姿麝凤蝶", "旖凤蝶", "红珠凤蝶", "热斑凤蝶"],总共有900张图片,每个文件夹单独放一种数据

第二步:搭建模型

本文选择一个Vision Transformer网络,其原理介绍如下:

Vision Transformer(ViT)是一种基于Transformer架构的深度学习模型,用于图像识别和计算机视觉任务。与传统的卷积神经网络(CNN)不同,ViT直接将图像视为一个序列化的输入,并利用自注意力机制来处理图像中的像素关系。

ViT通过将图像分成一系列的图块(patches),并将每个图块转换为向量表示作为输入序列。然后,这些向量将通过多层的Transformer编码器进行处理,其中包含了自注意力机制和前馈神经网络层。这样可以捕捉到图像中不同位置的上下文依赖关系。最后,通过对Transformer编码器输出进行分类或回归,可以完成特定的视觉任务。

Vit model结构图
Vit的模型结构如下图所示。vit是将图像块应用于transformer。CNN是以滑窗的思想用卷积核在图像上进行卷积得到特征图。为了可以使图像仿照NLP的输入序列,我们可以先将图像分成块(patch),再将这些图像块进行平铺后输入到网络中(这样就变成了图像序列),然后通过transformer进行特征提取,最后再通过MLP对这些特征进行分类【其实就可以理解为在以往的CNN分类任务中,将backbone替换为transformer】。

第三步:训练代码

1)损失函数为:交叉熵损失函数

2)训练代码:

import os
import math
import argparseimport torch
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
from torch.utils.tensorboard import SummaryWriter
from torchvision import transformsfrom my_dataset import MyDataSet
from vit_model import vit_base_patch16_224_in21k as create_model
from utils import read_split_data, train_one_epoch, evaluatedef main(args):device = torch.device(args.device if torch.cuda.is_available() else "cpu")if os.path.exists("./weights") is False:os.makedirs("./weights")tb_writer = SummaryWriter()train_images_path, train_images_label, val_images_path, val_images_label = read_split_data(args.data_path)data_transform = {"train": transforms.Compose([transforms.RandomResizedCrop(224),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),"val": transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])}# 实例化训练数据集train_dataset = MyDataSet(images_path=train_images_path,images_class=train_images_label,transform=data_transform["train"])# 实例化验证数据集val_dataset = MyDataSet(images_path=val_images_path,images_class=val_images_label,transform=data_transform["val"])batch_size = args.batch_sizenw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # number of workersprint('Using {} dataloader workers every process'.format(nw))train_loader = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,pin_memory=True,num_workers=nw,collate_fn=train_dataset.collate_fn)val_loader = torch.utils.data.DataLoader(val_dataset,batch_size=batch_size,shuffle=False,pin_memory=True,num_workers=nw,collate_fn=val_dataset.collate_fn)model = create_model(num_classes=args.num_classes, has_logits=False).to(device)if args.weights != "":assert os.path.exists(args.weights), "weights file: '{}' not exist.".format(args.weights)weights_dict = torch.load(args.weights, map_location=device)# 删除不需要的权重del_keys = ['head.weight', 'head.bias'] if model.has_logits \else ['pre_logits.fc.weight', 'pre_logits.fc.bias', 'head.weight', 'head.bias']for k in del_keys:del weights_dict[k]print(model.load_state_dict(weights_dict, strict=False))if args.freeze_layers:for name, para in model.named_parameters():# 除head, pre_logits外,其他权重全部冻结if "head" not in name and "pre_logits" not in name:para.requires_grad_(False)else:print("training {}".format(name))pg = [p for p in model.parameters() if p.requires_grad]optimizer = optim.SGD(pg, lr=args.lr, momentum=0.9, weight_decay=5E-5)# Scheduler https://arxiv.org/pdf/1812.01187.pdflf = lambda x: ((1 + math.cos(x * math.pi / args.epochs)) / 2) * (1 - args.lrf) + args.lrf  # cosinescheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)for epoch in range(args.epochs):# traintrain_loss, train_acc = train_one_epoch(model=model,optimizer=optimizer,data_loader=train_loader,device=device,epoch=epoch)scheduler.step()# validateval_loss, val_acc = evaluate(model=model,data_loader=val_loader,device=device,epoch=epoch)tags = ["train_loss", "train_acc", "val_loss", "val_acc", "learning_rate"]tb_writer.add_scalar(tags[0], train_loss, epoch)tb_writer.add_scalar(tags[1], train_acc, epoch)tb_writer.add_scalar(tags[2], val_loss, epoch)tb_writer.add_scalar(tags[3], val_acc, epoch)tb_writer.add_scalar(tags[4], optimizer.param_groups[0]["lr"], epoch)torch.save(model.state_dict(), "./weights/model-{}.pth".format(epoch))if __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('--num_classes', type=int, default=6)parser.add_argument('--epochs', type=int, default=100)parser.add_argument('--batch-size', type=int, default=4)parser.add_argument('--lr', type=float, default=0.001)parser.add_argument('--lrf', type=float, default=0.01)# 数据集所在根目录# https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgzparser.add_argument('--data-path', type=str,default=r"G:\demo\data\Butterfly20")parser.add_argument('--model-name', default='', help='create model name')# 预训练权重路径,如果不想载入就设置为空字符parser.add_argument('--weights', type=str, default='./vit_base_patch16_224_in21k.pth',help='initial weights path')# 是否冻结权重parser.add_argument('--freeze-layers', type=bool, default=True)parser.add_argument('--device', default='cuda:0', help='device id (i.e. 0 or 0,1 or cpu)')opt = parser.parse_args()main(opt)

第四步:统计正确率

第五步:搭建GUI界面

第六步:整个工程的内容

有训练代码和训练好的模型以及训练过程,提供数据,提供GUI界面代码

代码的下载路径(新窗口打开链接):基于Pytorch框架的深度学习Vision Transformer神经网络蝴蝶分类识别系统源码

有问题可以私信或者留言,有问必答

这篇关于基于Pytorch框架的深度学习Vision Transformer神经网络蝴蝶分类识别系统源码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1083385

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}