最火AI角色扮演流量已达谷歌搜索20%!每秒处理2万推理请求,Transformer作者公开优化秘诀

本文主要是介绍最火AI角色扮演流量已达谷歌搜索20%!每秒处理2万推理请求,Transformer作者公开优化秘诀,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

卡奥斯智能交互引擎是卡奥斯基于海尔近40年工业生产经验积累和卡奥斯7年工业互联网平台建设的最佳实践,基于大语言模型和RAG技术,集合海量工业领域生态资源方优质产品和知识服务,旨在通过智能搜索、连续交互,实时生成个性化的内容和智能化产品推荐,为用户提供快速、可靠的交互式搜索服务,首创了聚焦工业领域的智能交互引擎。

详情戳:卡奥斯智能交互引擎icon-default.png?t=N7T8https://datayi.cn/w/DPWgDgjP

什么AI应用每秒处理20000个AI推理请求,达到2024年谷歌搜索流量的1/5

答案是独角兽Character.ai,由Transformer作者Noam Shazeer(后面简称沙哥)创办。

刚刚,沙哥公布了推理优化独门秘诀,迅速引起业界热议。

图片

具体来说Character.ai在整个服务堆栈中实现了如下成绩:

  • 内存高效架构设计:将KV缓存大小减少20倍以上,而不会降低质量

  • Attention状态缓存:95%请求无需重算

  • 直接用in8精度量化训练:推理零损失还省显存

Character.AI通过以上种种优化,已经把推理成本降低到最初的1/33,如果用市场上最好的商业API来支撑这种级别的流量,成本会比现在高出13.5倍!

众多公布的方法中,原生int8训练是最受关注的。

图片

虽然大多数技巧都来自公开研究,但是正如网友所说,知道如何把它们高效整合在一起实现的团队才是真正的护城河。

图片

秘诀1:高效利用显存,attention 参数量降低20倍

大模型的一大痛点是显存占用高,导致无法支持大批量推理。Attention 层中的 Key-Value(KV)缓存便是罪魁祸首之一。

为了降低显存占用,Character.AI在Attention层大动手术:

  • 全面采用MQA(Multi-Query Attention)

与大多数开源模型中采用的GQA(Grouped-Query Attention)相比,将KV缓存大小减少了 8 倍。

而MQA正是沙哥本人2019年在谷歌期间提出的,有网友评价“当一个人能在生产环境中引用自己的论文,就达到了一个新的高度”。

图片
  • 混合注意力视野

将局部注意力与全局注意力层交织在一起,使用滑动窗口训练局部注意力,将复杂度从 O(length^2 ) 降低到 O(length)。

团队发现,将大多数注意力层的注意力范围减少到1024不会对评估指标产生重大影响,包括长上下文大海捞针基准。在Character.ai生产模型中,每6层中只有1层使用全局注意力

  • 跨层KV共享

团队将KV缓存绑定在相邻的注意力层上,这进一步将 KV缓存大小减少了 2-3 倍。

对于全局注意力,跨块绑定多个全局层的KV缓存,因为全局注意力层在长上下文用例中主导KV缓存大小,团队发现跨层共享KV不会降低质量。

下图中左半部分是标准Transformer设计,每个注意力都是全局注意力。右半部分为Character.ai的设计,蓝色框表示全局注意力,绿色框表示局部注意力,连线表示KV共享。

图片

这一套组合拳下来,KV缓存大小减少20倍以上,显存再也不是瓶颈了。

秘诀2:巧用状态缓存,95%请求无需重算

Character.AI还有一招神来之笔,就是在不同对话之间缓存Attention状态

作为聊天机器人角色扮演服务,Character.AI上大部分对话都是连续多轮的,平均每个对话包含180条消息。如果每次都要重新计算前面的状态,成本可想而知。

于是团队设计了一个缓存机制,把每个对话的Prefix和生成的消息都缓存在内存中,供后续调用。

借鉴RadixAttention的思路,树状结构的LRU缓存组织缓存的KV张量。缓存的KV值由前缀token的Rolling Hash速检索最长匹配的缓存,即使前缀只有部分匹配也能命中。

更妙的是,他们还用会话保持(Sticky Session)把同一对话路由到同一个服务器,进一步提高缓存命中率。最终做到95%的请求都能复用已有缓存,大幅降低了计算成本。

下图中,蓝色框表示主机内存上的缓存张量。绿色和黄色框表示CUDA内存上的KV缓存。当新查询到达时,它检索最长匹配前缀的KV缓存,Rolling Hash系统允许检索部分匹配消息的缓存。

图片

秘诀3:直接量化训练,推理零损失还省显存

最后一招,Character.AI没有采用常见的“训练后量化”,而是直接用Int8精度训练模型

这种格式虽然表达精度降低,但通过精心设计定制的矩阵乘和 Attention 内核,不仅把训练效率提高了好几倍,而且还能无损用于推理。

不过沙哥在这里暂时留了一手,表示“量化训练本身就是一个复杂的话题,将在以后的文章中继续讨论。”

沙哥其人

最后再来介绍一下传奇人物Noam Shazeer本人。

图片

他1994年拿了信息学奥赛IOI金牌,后来毕业于杜克大学。

2000年加入谷歌,当时全公司只有200人左右,他参与了谷歌搜索的拼写纠正功能,后来也负责过早期广告系统。

据知情人透露,在当初面试谷歌时,沙哥就被问到如何实现拼写纠正。他描述了一种根据其他用户的输入输入记录,进行统计验证的方法。

面试官Gmail之父Paul Buchheit意识到,沙哥的方案比谷歌当时使用的要好。沙哥成功入职之后就把他的面试方案写出来了。

图片

在Transformer开山之作《Attention is All You Need》研究中,沙哥最后一个加入团队,一来就负责重新编写了整个代码。

在沙哥出手之前,Transformer早期原型性能并没有超越当时流行的LSTM方案,是他把早期设计中的卷积等模块都拿掉,给出了一个极简主义方案。最终破了BLEU测试的记录,同时计算效率也更高。

队友用“他是一个巫师”来评价他的工程和代码能力。

除此之外,沙哥还有惊人的远见。在Transformer架构问世不久,他就给谷歌高层写信,提议公司放弃整个搜索索引,并用Transformer架构训练一个巨大的神经网络替代。

2021年,沙哥离开谷歌后创办了Character.AI,让玩家简单自创个性化AI陪聊,目前估值约50亿美元。

图片

最近有消息称,Meta与马斯克的𝕏都在争取与他们合作,把聊天机器人引入社交平台。

这篇关于最火AI角色扮演流量已达谷歌搜索20%!每秒处理2万推理请求,Transformer作者公开优化秘诀的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1082032

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

hdu1240、hdu1253(三维搜索题)

1、从后往前输入,(x,y,z); 2、从下往上输入,(y , z, x); 3、从左往右输入,(z,x,y); hdu1240代码如下: #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#inc

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传