吴恩达:从 Agent 到 Agentic,超越基础模型的下一代 AI

2024-06-20 12:44

本文主要是介绍吴恩达:从 Agent 到 Agentic,超越基础模型的下一代 AI,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Agentic AI:超越基础模型的下一代 AI — 来自吴恩达的洞察 

“与其争论哪些工作才算是真正的 Agent,不如承认系统可以具有不同程度的 Agentic 特性。” —— 吴恩达

2024年 Snowflake 峰会开发者日上,人工智能领域的领军人物吴恩达 (Andrew Ng) 发表了题为“AI 代理工作流及其推动 AI 进展的潜力 (How AlAgentic workflows could drive more Al progress than even the next generation of foundation models)”的演讲,为我们揭开了 Agentic AI 的神秘面纱,并指出这可能是比下一代基础模型更具潜力的 AI 发展方向。

Agentic AI :从 Agent 到 Agentic,开启 AI 新纪元

近年来,大型语言模型 (LLM) 如 GPT-3、GPT-4 等的出现,为人工智能领域带来了前所未有的突破。然而,传统的 LLM 交互方式更像是一种“非代理型工作流程 (Non-agentic workflow (zero-shot))”,用户输入指令,模型输出结果,缺乏迭代优化的空间,犹如一位才华横溢的作家,却被迫只能按照固定模板写作,无法自由挥洒其创作才能。

Agentic AI 的出现打破了这一僵局,它不再将 AI 系统视为被动接收指令的 Agent,而是赋予其主动思考、规划和执行任务的能力,使其更像是一个能够自主决策的智能体。而实现这一目标的关键,就是“代理型工作流程 (Agentic workflow) ”。

吴恩达指出, Agentic workflow 的核心在于将复杂任务分解成多个步骤,并通过循环迭代的方式逐步优化结果。这种工作方式更接近于人类解决问题的思维模式:

  1. 1. 目标设定: 明确任务目标,例如“写一篇关于 Agentic AI 的文章”。

  2. 2. 规划分解: 将任务分解成多个子任务,例如“确定主题、搜集资料、撰写内容、修改润色”等。

  3. 3. 迭代执行: 依次执行每个子任务,并根据反馈结果进行调整和优化,最终完成目标。

LLM-based agents:Agentic Workflow 大显身手的舞台

吴恩达在演讲中,特别以 “基于 LLM 的智能体 (LLM-based agents)” 为例,展示了 Agentic Workflow 如何提升 AI 系统的性能表现。

传统的 LLM 交互方式类似于“一次性 prompting ”,用户输入一个指令,模型生成一个输出,缺乏迭代优化的空间,难以处理复杂的任务。而 Agentic Workflow 则将 LLM 视为一个智能代理,通过多轮对话和反馈机制,引导 LLM 逐步完善输出结果。

为了验证 Agentic Workflow 的效果,吴恩达的团队进行了一项基于代码生成基准测试集 HumanEval (Coding Benchmark (HumanEval)) 的实验。

实验结果表明,即使是性能相对较弱的 GPT-3.5 模型,在采用 Agentic Workflow 后,其代码生成性能也能超过 GPT-4。下图展示了不同模型在 HumanEval 基准测试中的性能对比:

图片

从图中可以看出,采用 Agentic Workflow 的模型 (橙色点) 普遍取得了优于 Zero-shot 方法的性能表现。这充分证明了 Agentic AI 在突破性能瓶颈方面的巨大潜力。

Agentic vs Agent:一场认知的跃迁

在理解 Agentic AI 的过程中,我们需要厘清一个重要的概念区别:Agent 和 Agentic。

吴恩达在其博客文章中精辟地指出,"Agent" 是一个名词,意味着一种非黑即白的二元划分,而 "Agentic" 则是一个形容词,代表着一种程度概念。

传统的 AI 系统,例如我们熟悉的机器学习算法,大多可以被归类为 Agent。它们接收输入,根据预设的规则进行处理,最终输出结果。然而,Agentic AI 则更进了一步,它不再局限于被动执行指令,而是能够主动感知环境、理解目标,并自主选择行动方案,表现出不同程度的自主性和智能性。

这种从 Agent 到 Agentic 的转变并非一蹴而就,而是一个渐进式的演化过程。正如机器学习领域的发展历程,从早期的线性回归到如今的深度学习,Agentic AI 也需要经历不断的迭代和优化,才能最终实现其全部潜力。

更重要的是, Agentic 这一概念的提出,意味着我们不再纠结于 AI 系统是否真正具备了“智能”,而是将关注点放在了系统能够表现出多少“智能”上。这是一种认知上的重大转变,也是 Agentic AI 区别于传统 AI 的本质特征。

Agentic AI 的应用:从代码生成到视觉任务,重塑各个领域

除了在代码生成领域的突出表现,Agentic AI 在其他领域也展现出巨大的应用潜力,例如:

Vision Agent: 让 AI 看懂世界

在 Snowflake 峰会的演讲中,吴恩达还展示了他的团队开发的一款名为“Vision Agent”的视觉智能体。

Vision Agent 可以像一位经验丰富的程序员一样,根据用户的自然语言指令编写代码,完成各种视觉任务,例如目标检测、图像分割、视频分析等。

例如,用户可以输入指令“帮我找到所有带红色帽子的人”,Vision Agent 就会自动编写代码,识别图像或视频中所有符合条件的目标。

图片

 

Vision Agent 的工作流程如下:

  1. 1. 接收指令: 用户输入自然语言指令,例如“计算鲨鱼和最近的冲浪板之间的距离”。

  2. 2. 生成代码: Vision Agent 根据指令自动生成代码,完成图像处理和分析任务。

  3. 3. 执行代码: 代码被执行,并输出结果,例如鲨鱼和冲浪板之间的距离。

图片

 Vision Agent 的核心是一个名为“Coder Agent”的模块,它负责将自然语言指令转换为可执行的代码。

 

 Coder Agent 的工作原理如下:

  1. 1. 规划: 根据指令,制定一个计划,列出完成任务所需的步骤。

  2. 2. 检索工具: 为每个步骤检索所需的工具,例如图像处理函数、目标检测模型等。

  3. 3. 生成代码: 将计划和工具组合成可执行的代码。

为了进一步提高代码的质量和可靠性,Vision Agent 还引入了一个名为“Tester Agent”的模块,它负责对 Coder Agent 生成的代码进行测试和评估。

图片

 

Coder Agent 的工作原理如下:

  1. 1. 规划: 根据指令,制定一个计划,列出完成任务所需的步骤。

  2. 2. 检索工具: 为每个步骤检索所需的工具,例如图像处理函数、目标检测模型等。

  3. 3. 生成代码: 将计划和工具组合成可执行的代码。

为了进一步提高代码的质量和可靠性,Vision Agent 还引入了一个名为“Tester Agent”的模块,它负责对 Coder Agent 生成的代码进行测试和评估。

图片

Tester Agent 的工作原理如下:

  1. 1. 执行代码: 执行 Coder Agent 生成的代码。

  2. 2. 检查结果: 检查代码的执行结果是否符合预期。

  3. 3. 反馈错误: 如果发现错误,将错误信息反馈给 Coder Agent,以便其进行修正。

通过 Coder Agent 和 Tester Agent 的协同工作,Vision Agent 能够自动生成高质量的代码,并完成各种视觉任务。

以下是一些 Vision Agent 的应用示例:

  • • 检测图像中的人脸,并判断是否佩戴口罩:

图片

  • • 分析视频,识别交通事故:

图片

 

吴恩达的呼吁:拥抱 Agentic AI,共创智能未来

吴恩达认为,Agentic AI 的出现是人工智能领域的一场重大变革,它将从根本上改变我们与 AI 的交互方式,也将为人类社会带来巨大的价值。

他呼吁开发者积极拥抱 Agentic AI,探索其应用边界,共同推动 AI 技术的发展。同时,他也提醒人们关注 Agentic AI 可能带来的伦理和社会影响,例如算法偏见、隐私泄露等问题,并呼吁各界共同努力,确保 AI 技术安全可控地发展,为人类创造更加美好的未来。

参考资料

  • • Andrew Ng 在 2024 Snowflake 峰会开发者日上的演讲:https://www.youtube.com/watch?v=q1XFm21I-VQ

这篇关于吴恩达:从 Agent 到 Agentic,超越基础模型的下一代 AI的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1078171

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}