opencv 图像仿射变换 计算仿射变换后对应特征点的新坐标 图像旋转、缩放、平移

本文主要是介绍opencv 图像仿射变换 计算仿射变换后对应特征点的新坐标 图像旋转、缩放、平移,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

常常需要对图像进行仿射变换,仿射变换后,我们可能需要将原来图像中的特征点坐标进行重新计算,获得原来图像中例如眼睛瞳孔坐标的新的位置,用于在新得到图像中继续利用瞳孔位置坐标。


仿射变换在:http://blog.csdn.net/xiaowei_cqu/article/details/7616044 这位大牛的博客中已经介绍的非常清楚。

关于仿射变换的详细介绍,请见上面链接的博客。

我这里主要介绍如何在已经知道原图像中若干特征点的坐标之后,计算这些特征点进行放射变换之后的坐标,然后做一些补充。


** 在原文中,很多功能函数都是使用的cvXXX,例如cv2DRotationMatrix( center, degree,1, &M);  这些都是老版本的函数,在opencv2以后,应该尽量的使用全新的函数,所以在我的代码中,都是使用的最新的函数,不再使用 cvMat, 而是全部使用 Mat 类型。 **


1. 特征点对应的新的坐标计算

假设已经有一个原图像中的特征点的坐标 CvPoint point;  那么计算这个point的对应的仿射变换之后在新的图像中的坐标位置,使用的方法如下函数:

 

// 获取指定像素点放射变换后的新的坐标位置
CvPoint getPointAffinedPos(const CvPoint &src, const CvPoint ¢er, double angle)
{CvPoint dst;int x = src.x - center.x;int y = src.y - center.y;dst.x = cvRound(x * cos(angle) + y * sin(angle) + center.x);dst.y = cvRound(-x * sin(angle) + y * cos(angle) + center.y);return dst;
}


要特别注意的是,在对一个原图像中的像素的坐标进行计算仿射变换之后的坐标的时候,一定要按照仿射变换的基本原理,将原来的坐标减去仿射变换的旋转中心的坐标,这样仿射变换之后得到的坐标再加上仿射变换旋转中心坐标才是原坐标在新的仿射变换之后的图像中的正确坐标。

 


下面给出计算对应瞳孔坐标旋转之后的坐标位置的示例代码:

 

// AffineTransformation.cpp : Defines the entry point for the console application.
//#include "stdafx.h"
#include "stdio.h"
#include "iostream"#include "opencv2/opencv.hpp"using namespace std;
using namespace cv;// 获取指定像素点放射变换后的新的坐标位置
CvPoint getPointAffinedPos(const CvPoint &src, const CvPoint ¢er, double angle);
Mat ImageRotate(Mat & src, const CvPoint &_center, double angle);
Mat ImageRotate2NewSize(Mat& src, const CvPoint &_center, double angle);int _tmain(int argc, _TCHAR* argv[])
{string image_path = "D:/lena.jpg";Mat img = imread(image_path);cvtColor(img, img, CV_BGR2GRAY);Mat src;img.copyTo(src);CvPoint Leye;Leye.x = 265;Leye.y = 265;CvPoint Reye;Reye.x = 328;Reye.y = 265;// draw pupilsrc.at<unsigned char>(Leye.y, Leye.x) = 255;src.at<unsigned char>(Reye.y, Reye.x) = 255;imshow("src", src);//CvPoint center;center.x = img.cols / 2;center.y = img.rows / 2;double angle = 15L;Mat dst = ImageRotate(img, center, angle);// 计算原特征点在旋转后图像中的对应的坐标CvPoint l2 = getPointAffinedPos(Leye, center, angle * CV_PI / 180);CvPoint r2 = getPointAffinedPos(Reye, center, angle * CV_PI / 180);// draw pupildst.at<unsigned char>(l2.y, l2.x) = 255;dst.at<unsigned char>(r2.y, r2.x) = 255;//Mat dst = ImageRotate2NewSize(img, center, angle);imshow("dst", dst);waitKey(0);return 0;
}Mat ImageRotate(Mat & src, const CvPoint &_center, double angle)
{CvPoint2D32f center;center.x = float(_center.x);center.y = float(_center.y);//计算二维旋转的仿射变换矩阵Mat M = getRotationMatrix2D(center, angle, 1);// rotateMat dst;warpAffine(src, dst, M, cvSize(src.cols, src.rows), CV_INTER_LINEAR);return dst;
}// 获取指定像素点放射变换后的新的坐标位置
CvPoint getPointAffinedPos(const CvPoint &src, const CvPoint ¢er, double angle)
{CvPoint dst;int x = src.x - center.x;int y = src.y - center.y;dst.x = cvRound(x * cos(angle) + y * sin(angle) + center.x);dst.y = cvRound(-x * sin(angle) + y * cos(angle) + center.y);return dst;
}


这里,我们先通过手工找到瞳孔坐标,然后计算在图像旋转之后瞳孔的坐标。

 

运行结果如图:

原图像

旋转之后的图像:



2. 旋转中心对于旋转的影响

然后我们看看仿射变换旋转点的选择对于旋转之后的图像的影响,一般情况下,我们选择图像的中心点作为仿射变换的旋转中心,获得的旋转之后的图像与原图像大小一样。

计算代码: 

 

int _tmain(int argc, _TCHAR* argv[])
{string image_path = "D:/lena.jpg";Mat img = imread(image_path);cvtColor(img, img, CV_BGR2GRAY);Mat src;img.copyTo(src);CvPoint Leye;Leye.x = 265;Leye.y = 265;CvPoint Reye;Reye.x = 328;Reye.y = 265;// draw pupilsrc.at<unsigned char>(Leye.y, Leye.x) = 255;src.at<unsigned char>(Reye.y, Reye.x) = 255;imshow("src", src);///*CvPoint center;center.x = img.cols / 2;center.y = img.rows / 2;*/CvPoint center;center.x = 0;center.y = 0;double angle = 15L;Mat dst = ImageRotate(img, center, angle);// 计算原特征点在旋转后图像中的对应的坐标CvPoint l2 = getPointAffinedPos(Leye, center, angle * CV_PI / 180);CvPoint r2 = getPointAffinedPos(Reye, center, angle * CV_PI / 180);// draw pupildst.at<unsigned char>(l2.y, l2.x) = 255;dst.at<unsigned char>(r2.y, r2.x) = 255;//Mat dst = ImageRotate2NewSize(img, center, angle);imshow("dst", dst);waitKey(0);return 0;
}


这里绕着(0,0)点进行旋转,旋转之后的图像:

 



绕着左下角旋转:

 

	CvPoint center;center.x = 0;center.y = img.rows;


旋转之后的图像:

 



3. 缩放因子对于旋转图像的影响

上面我们的代码都没有添加缩放信息,现在对上面的代码进行稍加修改,添加缩放参数,然后看一下如何计算对应的新的坐标。

 

#include "stdafx.h"
#include "stdio.h"
#include "iostream"#include "opencv2/opencv.hpp"using namespace std;
using namespace cv;// 获取指定像素点放射变换后的新的坐标位置
CvPoint getPointAffinedPos(const CvPoint &src, const CvPoint ¢er, double angle, double scale);
Mat ImageRotate(Mat & src, const CvPoint &_center, double angle, double scale);
Mat ImageRotate2NewSize(Mat& src, const CvPoint &_center, double angle, double scale);int _tmain(int argc, _TCHAR* argv[])
{string image_path = "D:/lena.jpg";Mat img = imread(image_path);cvtColor(img, img, CV_BGR2GRAY);double scale = 0.5;Mat src;img.copyTo(src);CvPoint Leye;Leye.x = 265;Leye.y = 265;CvPoint Reye;Reye.x = 328;Reye.y = 265;// draw pupilsrc.at<unsigned char>(Leye.y, Leye.x) = 255;src.at<unsigned char>(Reye.y, Reye.x) = 255;imshow("src", src);//CvPoint center;center.x = img.cols / 2;center.y = img.rows / 2;double angle = 15L;Mat dst = ImageRotate(img, center, angle, scale);// 计算原特征点在旋转后图像中的对应的坐标CvPoint l2 = getPointAffinedPos(Leye, center, angle * CV_PI / 180, scale);CvPoint r2 = getPointAffinedPos(Reye, center, angle * CV_PI / 180, scale);// draw pupildst.at<unsigned char>(l2.y, l2.x) = 255;dst.at<unsigned char>(r2.y, r2.x) = 255;//Mat dst = ImageRotate2NewSize(img, center, angle);imshow("dst", dst);waitKey(0);return 0;
}Mat ImageRotate(Mat & src, const CvPoint &_center, double angle, double scale)
{CvPoint2D32f center;center.x = float(_center.x);center.y = float(_center.y);//计算二维旋转的仿射变换矩阵Mat M = getRotationMatrix2D(center, angle, scale);// rotateMat dst;warpAffine(src, dst, M, cvSize(src.cols, src.rows), CV_INTER_LINEAR);return dst;
}// 获取指定像素点放射变换后的新的坐标位置
CvPoint getPointAffinedPos(const CvPoint &src, const CvPoint ¢er, double angle, double scale)
{CvPoint dst;int x = src.x - center.x;int y = src.y - center.y;dst.x = cvRound(x * cos(angle) * scale  + y * sin(angle) * scale + center.x);dst.y = cvRound(-x * sin(angle) * scale + y * cos(angle) * scale + center.y);return dst;
}


当缩放尺度为0.5的时候,程序的运行结果如图:

 




4.  根据旋转与缩放尺度获得与原始图像大小不同的图像大小(新的合适的大小)


上面的计算中,一直都是放射变换之后计算得到的图像和原始图像一样大,但是因为旋转、缩放之后图像可能会变大或者变小,我们再次对上面的代码进行修改,这样在获得仿射变换之后的图像前,需要重新计算生成的图像的大小。


计算方法:

 

	double angle2 = angle * CV_PI / 180;int width = src.cols;int height = src.rows;double alpha = cos(angle2) * scale; double beta = sin(angle2) * scale;int new_width = (int)(width * fabs(alpha) + height * fabs(beta));int new_height = (int)(width * fabs(beta) + height * fabs(alpha));


另外,因为我们的图像旋转是按照原图像的中心,所以当获取到图像的仿射变换矩阵之后,我们需要根据新生成的图像的大小,给仿射变换矩阵添加平移信息。

 

或者可以这么说,我们新计算得到的图像的大小,让原始图像绕着新的图像大小的中心进行旋转。

 

	//计算二维旋转的仿射变换矩阵Mat M = getRotationMatrix2D(center, angle, scale);// 给计算得到的旋转矩阵添加平移M.at<double>(0, 2) += (int)((new_width - width )/2);M.at<double>(1, 2) += (int)((new_height - height )/2);


然后另外需要注意的是,如果你在原始图像中有一些特征点的坐标,这些特征点的坐标映射到新的图像上的时候,需要在以前的方法的基础上增加平移信息。

 


 

// 获取指定像素点放射变换后的新的坐标位置
CvPoint getPointAffinedPos(Mat & src, Mat & dst, const CvPoint &src_p, const CvPoint ¢er, double angle, double scale)
{double alpha = cos(angle) * scale; double beta = sin(angle) * scale;int width = src.cols;int height = src.rows;CvPoint dst_p;int x = src_p.x - center.x;int y = src_p.y - center.y;dst_p.x = cvRound(x * alpha  + y * beta + center.x);dst_p.y = cvRound(-x * beta + y * alpha + center.y);int new_width = dst.cols;int new_height = dst.rows;int movx = (int)((new_width - width)/2);int movy = (int)((new_height - height)/2);dst_p.x += movx;dst_p.y += movy;return dst_p;
}


 

我们仿射变换函数代码:

 

Mat ImageRotate2NewSize(Mat& src, const CvPoint &_center, double angle, double scale)
{double angle2 = angle * CV_PI / 180;int width = src.cols;int height = src.rows;double alpha = cos(angle2) * scale; double beta = sin(angle2) * scale;int new_width = (int)(width * fabs(alpha) + height * fabs(beta));int new_height = (int)(width * fabs(beta) + height * fabs(alpha));CvPoint2D32f center;center.x = float(width / 2);center.y = float(height / 2);//计算二维旋转的仿射变换矩阵Mat M = getRotationMatrix2D(center, angle, scale);// 给计算得到的旋转矩阵添加平移M.at<double>(0, 2) += (int)((new_width - width )/2);M.at<double>(1, 2) += (int)((new_height - height )/2);// rotateMat dst;warpAffine(src, dst, M, cvSize(new_width, new_height), CV_INTER_LINEAR);return dst;
}


主函数:

 


 

int _tmain(int argc, _TCHAR* argv[])
{string image_path = "D:/lena.jpg";Mat img = imread(image_path);cvtColor(img, img, CV_BGR2GRAY);double scale = 0.5;Mat src;img.copyTo(src);CvPoint Leye;Leye.x = 265;Leye.y = 265;CvPoint Reye;Reye.x = 328;Reye.y = 265;// draw pupilsrc.at<unsigned char>(Leye.y, Leye.x) = 255;src.at<unsigned char>(Reye.y, Reye.x) = 255;imshow("src", src);//CvPoint center;center.x = img.cols / 2;center.y = img.rows / 2;double angle = 15L;//Mat dst = ImageRotate(img, center, angle, scale);Mat dst = ImageRotate2NewSize(img, center, angle, scale);// 计算原特征点在旋转后图像中的对应的坐标CvPoint l2 = getPointAffinedPos(src, dst, Leye, center, angle * CV_PI / 180, scale);CvPoint r2 = getPointAffinedPos(src, dst, Reye, center, angle * CV_PI / 180, scale);// draw pupildst.at<unsigned char>(l2.y, l2.x) = 255;dst.at<unsigned char>(r2.y, r2.x) = 255;imshow("dst", dst);waitKey(0);return 0;
}


仿射变换结果以及瞳孔重新坐标计算结果:

 



5. 根据三个点进行仿射变换


根据给点的三个点,由这三个点之前的坐标以及变换之后的坐标,对原图像进行仿射变换,不过需要事先知道三个点仿射变换的坐标位置。
int _tmain(int argc, _TCHAR* argv[])
{string image_path = "D:/lena.jpg";Mat img = imread(image_path);Point2f src_points[3];src_points[0] = Point2f(100, 100);src_points[1] = Point2f(400, 100);src_points[2] = Point2f(250, 300);Point2f dst_points[3];dst_points[0] = Point2f(100, 100);dst_points[1] = Point2f(400, 300);dst_points[2] = Point2f(100, 300);Mat M1 = getAffineTransform(src_points, dst_points);Mat dst;warpAffine(img, dst, M1, cvSize(img.cols, img.rows), INTER_LINEAR);imshow("dst", dst);//cvtColor(img, img, CV_BGR2GRAY);//double scale = 1.5;//Mat src;//img.copyTo(src);//CvPoint Leye;//Leye.x = 265;//Leye.y = 265;//CvPoint Reye;//Reye.x = 328;//Reye.y = 265;draw pupil//src.at<unsigned char>(Leye.y, Leye.x) = 255;//src.at<unsigned char>(Reye.y, Reye.x) = 255;//imshow("src", src);//CvPoint center;//center.x = img.cols / 2;//center.y = img.rows / 2;//double angle = 15L;Mat dst = ImageRotate(img, center, angle, scale);//Mat dst = ImageRotate2NewSize(img, center, angle, scale);计算原特征点在旋转后图像中的对应的坐标//CvPoint l2 = getPointAffinedPos(src, dst, Leye, center, angle * CV_PI / 180, scale);//CvPoint r2 = getPointAffinedPos(src, dst, Reye, center, angle * CV_PI / 180, scale);draw pupil//dst.at<unsigned char>(l2.y, l2.x) = 255;//dst.at<unsigned char>(r2.y, r2.x) = 255;//imshow("dst", dst);waitKey(0);return 0;
}

结果:
 

这篇关于opencv 图像仿射变换 计算仿射变换后对应特征点的新坐标 图像旋转、缩放、平移的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1073294

相关文章

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

Qt QWidget实现图片旋转动画

《QtQWidget实现图片旋转动画》这篇文章主要为大家详细介绍了如何使用了Qt和QWidget实现图片旋转动画效果,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、效果展示二、源码分享本例程通过QGraphicsView实现svg格式图片旋转。.hpjavascript

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu