智能优化算法应用:麻雀算法优化脉冲耦合神经网络的图像自动分割 -附代码

本文主要是介绍智能优化算法应用:麻雀算法优化脉冲耦合神经网络的图像自动分割 -附代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

智能优化算法应用:麻雀算法优化脉冲耦合神经网络的图像自动分割

文章目录

  • 智能优化算法应用:麻雀算法优化脉冲耦合神经网络的图像自动分割
    • 1.麻雀搜索算法
    • 2.PCNN网络
    • 3.实验结果
    • 4.参考文献
    • 5.Matlab代码

摘要:本文利用麻雀搜索算法对脉冲耦合神经网络的参数进行优化,以信息熵作为适应度函数,提高其图像分割的性能。

1.麻雀搜索算法

麻雀搜索算法的具体原理参考博客:https://blog.csdn.net/u011835903/article/details/108830958。

2.PCNN网络

在这里插入图片描述

图1.PCNN 模型结构

为了提高效率,减少参数间的相互作用,采用简化的 PCNN 模型。如图1所示,简化 PCNN 的结构分为接收部分、调制部分和脉冲发生器 3 部分。其数学表达式为:
F i j [ n ] = S i j (1) F_{ij}[n] = S_{ij} \tag{1} Fij[n]=Sij(1)

F i j [ n ] = ∑ W i j k l Y k l [ n − 1 ] (2) F_{ij}[n] = \sum W_{ijkl}Y_{kl}[n-1] \tag{2} Fij[n]=WijklYkl[n1](2)

θ i j [ n ] = e x p ( − α E ) θ i j [ n − 1 ] + V E Y i j [ n − 1 ] (3) \theta_{ij}[n] = exp(-\alpha_E)\theta_{ij}[n-1]+V_EY_{ij}[n-1] \tag{3} θij[n]=exp(αE)θij[n1]+VEYij[n1](3)

Y i j [ n ] = { 1 , U i j [ n ] ≥ θ i j [ n ] 0 , U i j [ n ] < θ i j [ n ] (4) Y_{ij}[n] = \begin{cases} 1,U_{ij}[n]\geq \theta_{ij}[n]\\ 0,U_{ij}[n]<\theta_{ij}[n] \end{cases} \tag{4} Yij[n]={1,Uij[n]θij[n]0,Uij[n]<θij[n](4)

式中: F i j [ n ] F_{ij}[n] Fij[n]表示 PCNN 的输入; S i j [ n ] S_{ij}[n] Sij[n]是外部输入,比如一幅图像的所有像素点; L i j [ n ] L_{ij}[n] Lij[n]是连接输入; U i j [ n ] U_{ij}[n] Uij[n]是内部活动项, θ i j [ n ] \theta_{ij}[n] θij[n]表示动态阈值, Y i j [ n ] Y_{ij}[n] Yij[n]是神经网络的输出; β \beta β是连接系数, W i j k l W_{ijkl} Wijkl是连接矩阵; α E \alpha_E αE是阈值衰减系数, V E V_E VE 是阈值放大系数。通常 W i j k l W_{ijkl} Wijkl可以设置为:
W i j k l = [ 0.707 1 0.707 1 0 1 0.707 1 0.707 ] (5) W_{ijkl} = [\begin{matrix}0.707&1&0.707\\ 1&0&1\\ 0.707&1&0.707 \end{matrix}] \tag{5} Wijkl=[0.70710.7071010.70710.707](5)
在这些参数中,对分割结果产生较大影响的主要有3个:连接系数 β \beta β、阈值衰减系数 α E \alpha_E αE 、阈值放大系数 V E V_E VE

3.麻雀适应度函数设计

适应度函数作为优化算法中重要的一部分,影响着分割结果。熵能够反映目标包含的信息量的大小,熵越大,说明包含的信息量越大。因此,本文选取分割后图像的熵作为适应度函数,其公式为:
H = − p 1 ∗ l o g 2 p 1 − p 0 ∗ l o g 2 p 0 (6) H =-p_1*log_2p_1 - p_0*log_2p_0 \tag{6} H=p1log2p1p0log2p0(6)
式中: p 1 p_1 p1是二值图像中 1 占整幅图像的比例; p 0 p_0 p0 是二值图像中 0 占整幅图像的比例。

由于麻雀优化算法为寻找最小值,于是添加负号,转换为选找最小值:
f i t n e s s = a r g m i n ( − H ) (7) fitness = argmin(-H) \tag{7} fitness=argmin(H)(7)

3.实验结果

麻雀参数设置如下:

3 个参数范围均设置为 0.001 ~200;

%% 麻雀算法优化脉冲耦合神经网络的图像自动分割
%读取图像
I = imread('lena.jpg');
%将图像转换为灰度图
if(size(I,3)~=1)Igray = rgb2gray(I);
elseIgray = I;
end
%对连接系数β、阈值衰减系数 αE 、阈值放大数 VE进行优化
%设置麻雀算法参数
%参数范围均设置为 0.001-200
dim = 3;%维度,3维即优化的3个参数
lb = 0.001.*ones(1,dim); %下边界
ub = 200.*ones(1,dim); %上边界
pop = 20;%种群数量
Max_iteration = 20;%最大迭代次数
fobj = @(x) fun(x,Igray);%适应度函数

在这里插入图片描述

优化的连接系数β、阈值衰减系数 αE 、阈值放大数 VE分别为:51.99388 0.001 155.0309

SSA-PCNN分割后的信息熵值0.99998

从结果图像和信息熵值来看,信息熵值接近1,表明优化取得了一个比较好的结果。

4.参考文献

[1]贾鹤鸣,康立飞,孙康健,彭晓旭,李瑶,姜子超.哈里斯鹰算法优化脉冲耦合神经网络的图像自动分割[J].应用科技,2019,46(04):16-20+25. (基本原理参考该文章)

5.Matlab代码

1.麻雀算法优化脉冲耦合神经网络的图像自动分割

2.哈里斯鹰算法优化脉冲耦合神经网络的图像自动分割
[1]贾鹤鸣,康立飞,孙康健,彭晓旭,李瑶,姜子超.哈里斯鹰算法优化脉冲耦合神经网络的图像自动分割[J].应用科技,2019,46(04):16-20+25.

个人资料介绍

这篇关于智能优化算法应用:麻雀算法优化脉冲耦合神经网络的图像自动分割 -附代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071681

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖