智能优化算法:饥饿游戏搜索算法-附代码

2024-06-18 07:08

本文主要是介绍智能优化算法:饥饿游戏搜索算法-附代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

智能优化算法:饥饿游戏搜索算法

文章目录

  • 智能优化算法:饥饿游戏搜索算法
    • 1.算法原理
      • 1.1 接近食物
      • 1.2 饥饿角色
    • 2.实验结果
    • 3.参考文献
    • 4.Matlab

摘要:饥饿游戏搜索算法(Hunger games search,HGS)是于2021年提出的一种新型智能优化算法,该算法是根据动物饥饿驱动活动和行为而设计的,具有寻优能力强,收敛速度快等特点。

1.算法原理

1.1 接近食物

动物接近食物的行为可以用式(1)表示:
X ( t + 1 ) = { X ( t ) ( 1 + r a n d n ( 1 ) ) , r 1 < l W 1 X b + R W 2 ∣ X b − X ( t ) ∣ , r 1 > l , r 2 > E W 1 X b − R W 2 ∣ X b − X ( t ) ∣ , r 1 > l , r 2 < E (1) X(t+1)=\begin{cases} X(t)(1+randn(1)),r_1<l\\ W_1X_b+RW_2|X_b-X(t)|,r_1>l,r_2>E\\ W_1X_b-RW_2|X_b-X(t)|,r_1>l,r2<E \end{cases}\tag{1} X(t+1)=X(t)(1+randn(1)),r1<lW1Xb+RW2XbX(t),r1>l,r2>EW1XbRW2XbX(t),r1>l,r2<E(1)
其中, R R R是介于 [ − a , a ] [-a,a] [a,a]的随机数; r 1 , r 2 r_1,r_2 r1,r2均为[0,1]之间的随机数;randn是满足标准正态分布的随机数; t t t为当前迭代次数; W 1 W_1 W1 W 2 W_2 W2表示饥饿权重; X b X_b Xb表示全局最优位置; X ( t ) X(t) X(t)表示当前个体位置; l l l是设置的常数。 E E E的计算公式如下:
E = s e c h ( ∣ F ( i ) − B F ∣ ) (2) E=sech(|F(i)-BF|)\tag{2} E=sech(F(i)BF)(2)
其中 i ∈ ( 1 , 2 , . . . , N ) i\in(1,2,...,N) i(1,2,...,N) F ( i ) F(i) F(i) i i i个个体的适应度值; B F BF BF是当前最优适应度值。 s e c h sech sech是一个双曲函数。
s e c h ( x ) = 2 e x + e − x (2) sech(x)=\frac{2}{e^x+e^{-x}} \tag{2} sech(x)=ex+ex2(2)
R的计算公式如下:
R = 2 ∗ a ∗ r a n d − a (4) R=2*a*rand-a \tag{4} R=2aranda(4)

a = 2 ∗ ( 1 − t / M a x i t e r ) (5) a=2*(1-t/Max_{iter})\tag{5} a=2(1t/Maxiter)(5)

1.2 饥饿角色

对搜索中个体的饥饿特征进行了数学建模

W 1 W_1 W1的计算如式(6)所示:
W 1 i = { h u n g r y ( i ) N S H u n g r y r 4 , r 3 < l 1 , r 3 > l (6) W_1^i=\begin{cases} hungry(i)\frac{N}{SHungry}r_4,r3<l\\ 1,r3>l \end{cases}\tag{6} W1i={hungry(i)SHungryNr4,r3<l1,r3>l(6)
W 2 W_2 W2的计算如式(7)所示:
W 2 i = ( 1 − e x p ( − ∣ h u n g r y ( i ) − S H u n g r y ∣ ) ) ∗ r 2 ∗ 2 (7) W_2^i=(1-exp(-|hungry(i)-SHungry|))*r_2*2 \tag{7} W2i=(1exp(hungry(i)SHungry))r22(7)
其中, h u n g r y hungry hungry表示每个个体的饥饿程度; N N N表示所有个体的总数; S H u n g r y SHungry SHungry表示所有个体饥饿程度的总和,即 s u m ( h u n g r y ) sum(hungry) sum(hungry) r 3 , r 4 , r 5 r_3,r_4,r_5 r3,r4,r5均为[0,1]之间的随机数。 h u n g r y ( i ) hungry(i) hungry(i)计算如下:
h u n g r y ( i ) = { 0 , A l l F i t n e s s ( i ) = = B F h u n g r y ( i ) + H , e l s e (8) hungry(i)=\begin{cases} 0,AllFitness(i)==BF\\ hungry(i)+H,else \end{cases}\tag{8} hungry(i)={0,AllFitness(i)==BFhungry(i)+H,else(8)
其中, A l l F i t n e s s ( i ) AllFitness(i) AllFitness(i)表示每个个体的适应度值。 H H H的计算如下:
T H = F ( i ) − B F W F − B F ∗ r 6 ∗ 2 ∗ ( U B − L B ) (9) TH=\frac{F(i)-BF}{WF-BF}*r_6*2*(UB-LB)\tag{9} TH=WFBFF(i)BFr62(UBLB)(9)

H = { L H ∗ ( 1 + r ) , T H < L H T H , e l s e (10) H=\begin{cases} LH*(1+r),TH<LH\\ TH,else \end{cases}\tag{10} H={LH(1+r),TH<LHTH,else(10)

其中, r 6 r_6 r6为[0,1]之间的随机数; F ( i ) F(i) F(i)为每个个体的适应度值; B F BF BF为当前最优适应度值; W F WF WF为当前最差适应度值; U B UB UB L B LB LB分别表示搜索空间的上限和下限; L H LH LH H H H的下界。

算法伪代码

Algorithm 1 Pseudo-code of Hunger Games Search (HGS)
Initialize the parameters N, T,l,D,SHungry
Initialize the positions of Individuals X i (i = 1,2,⋯,N)
While (t ≤ T)
Calculate the fitness of all Individuals
UpdateBF,WF,X b ,BI
Calculate the Hungry by Eq. (8)
Calculate the W 1  by Eq. (6)
Calculate the W 2  by Eq. (7)
For eachIndividuals
Calculate E by Eq. (2)
Update R by Eq. (4)
UpdatepositionsbyEq.(1)
End For
t = t + 1
End While
ReturnBF,X 

2.实验结果

请添加图片描述

3.参考文献

[1] Yutao Yang, Huiling Chen, Ali Asghar Heidari, Amir H Gandomi. Hunger Games Search: Visions, Conception, Implementation, Deep Analysis, Perspectives, and Towards Performance Shifts[J]. Expert Systems with Applications, 2021, 177: 114864.

4.Matlab

这篇关于智能优化算法:饥饿游戏搜索算法-附代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071616

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.