AcWing 1273:天才的记忆 ← ST算法求解RMQ问题

2024-06-18 05:28

本文主要是介绍AcWing 1273:天才的记忆 ← ST算法求解RMQ问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【题目来源】
https://www.acwing.com/problem/content/1275/

【题目描述】
从前有个人名叫 WNB,他有着天才般的记忆力,他珍藏了许多许多的宝藏。
在他离世之后留给后人一个难题(专门考验记忆力的啊!),如果谁能轻松回答出这个问题,便可以继承他的宝藏。
题目是这样的:给你一大串数字(编号为 1 到 N,大小可不一定哦!),在你看过一遍之后,它便消失在你面前,随后问题就出现了,给你 M 个询问,每次询问就给你两个数字 A,B,要求你瞬间就说出属于 A 到 B 这段区间内的最大数。
一天,一位美丽的姐姐从天上飞过,看到这个问题,感到很有意思(主要是据说那个宝藏里面藏着一种美容水,喝了可以让这美丽的姐姐更加迷人),于是她就竭尽全力想解决这个问题。
但是,她每次都以失败告终,因为这数字的个数是在太多了!
于是她请天才的你帮他解决。如果你帮她解决了这个问题,可是会得到很多甜头的哦!

【输入格式】
第一行一个整数 N 表示数字的个数。
接下来一行为 N 个数,表示数字序列。
第三行读入一个 M,表示你看完那串数后需要被提问的次数。
接下来 M 行,每行都有两个整数 A,B。

【输出格式】
输出共 M 行,每行输出一个数,表示对一个问题的回答。

【数据范围】
1≤N≤2×10^5,
1≤M≤10^4,
1≤A≤B≤N。

【输入样例】
6
34 1 8 123 3 2
4
1 2
1 5
3 4
2 3

【输出样例】
34
123
123
8

【算法分析】
● ST算法(Sparse Table,稀疏表):
https://blog.csdn.net/hnjzsyjyj/article/details/103429761

● 信息学竞赛中,经常会出现RMQ问题,即求区间最大(小)值问题。那么,我们该如何求解呢?ST算法横空出世。 
ST算法(Sparse Table,稀疏表)主要用于解决区间最值问题(即RMQ问题)。因为ST算法求解RMQ问题时的时间复杂度只有O(nlogn),查询时间复杂度为常数阶O(1),所以我们还常称
ST算法为TLE的死敌。虽然还可以使用线段树、树状数组、splay等算法求解区间最值问题,但是ST算法比它们更快,更适用于在线查询。
ST算法分成两部分:离线预处理O(nlogn)和在线查询O(1)。
(1)离线预处理:运用DP思想求解区间最值,并将结果保存到一个二维数组中。
(2)在线查询:对给定区间进行分割,并借助上步中的二维数组求最值

● 本题利用了
ST算法求解RMQ问题,ST算法分预处理及询问两部分。要理解ST算法,首先要注意下文表述中的移位运算符 >>及<< 的优先级比四则运算 +-*/ 的优先级高。这样就能理解 1<<(j-1) 及 1<<j-1 代表不同的运算,即 1<<(j-1) 等价于 2^(j-1), 1<<j-1  等价于 2^j-1
1. 预处理
ST算法首先约定用 a[1] ~ a[n] 表示给定的一组数,
f[i][j]表示从 a[i] ~ a[i+1<<j-1] 范围内的最大值,也即以 a[i] 为起点的连续 2^j 个数的最大值(∵ a[x] ~ a[y] 包含有 y-x+1 个数)。由于ST算法用到了倍增思想,因此自然有将 2^j 个数从中间平均分成两等分的实践,显然每一部分有 1<<(j-1) 个数,即2^(j-1) 个数。显然,初始范围 a[i] ~ a[i+1<<j-1] 被等分后,第一部分范围为 a[i] ~a[i+1<<(j-1)-1],第二部分范围为 a[i+1<<(j-1)] ~ a[i+1<<j-1],分别对应于f[i][j-1]和f[i+1<<(j-1)][j-1]。
综上,得
f[i][j]=max(f[i][j-1],f[i+(1<<(j-1))][j-1])

2. 查询
若给定查询区间 [x,y],若利用ST算法求此区间内的最大值。则需先求出最大的 k,使之满足
2^k ≤ y-x+1
在此基础上,区间
[x,y]=[x,x+2^k-1]∪[y-2^k+1,y],则区间 [x,y] 内的最大值为 max(f[x][k],f[y-(1<<k)+1][k])

据上,利用ST算法查询区间 [x,y] 的最大值,计算式如下:
k=log2(y-x+1)
max(f[x][k],f[y-(1<<k)+1][k])


【算法代码】

#include<bits/stdc++.h>
using namespace std;const int maxn=2e5+5;
const int maxm=18; //∵log(2e5)<18
int a[maxn];
int f[maxn][maxm]; //f[i][j]表示从i位起的2^j个数中的最大数int main() {int n,m,x,y;scanf("%d",&n);for(int i=1; i<=n; i++) {scanf("%d",&a[i]); //数组a的下标从1开始f[i][0]=a[i]; //f[i][0]表示[i,i]中的最大值,只能是a[i],故f[i][0]=a[i]}for(int j=1; j<=log2(n); j++)for(int i=1; i+(1<<j)-1<=n; i++) //注意i的右端点为i+(1<<j)-1,不能越界f[i][j]=max(f[i][j-1],f[i+(1<<(j-1))][j-1]); //预处理scanf("%d",&m);for(int i=1; i<=m; i++) { //查询scanf("%d%d",&x,&y);int k=log2(y-x+1);printf("%d\n",max(f[x][k],f[y-(1<<k)+1][k]));}return 0;
}/*
in:
6
34 1 8 123 3 2
4
1 2
1 5
3 4
2 3out:
34
123
123
8
*/





【参考文献】
https://blog.csdn.net/hnjzsyjyj/article/details/103429761
https://www.acwing.com/solution/content/14969/





 

这篇关于AcWing 1273:天才的记忆 ← ST算法求解RMQ问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071420

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

缓存雪崩问题

缓存雪崩是缓存中大量key失效后当高并发到来时导致大量请求到数据库,瞬间耗尽数据库资源,导致数据库无法使用。 解决方案: 1、使用锁进行控制 2、对同一类型信息的key设置不同的过期时间 3、缓存预热 1. 什么是缓存雪崩 缓存雪崩是指在短时间内,大量缓存数据同时失效,导致所有请求直接涌向数据库,瞬间增加数据库的负载压力,可能导致数据库性能下降甚至崩溃。这种情况往往发生在缓存中大量 k