AcWing 1273:天才的记忆 ← ST算法求解RMQ问题

2024-06-18 05:28

本文主要是介绍AcWing 1273:天才的记忆 ← ST算法求解RMQ问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【题目来源】
https://www.acwing.com/problem/content/1275/

【题目描述】
从前有个人名叫 WNB,他有着天才般的记忆力,他珍藏了许多许多的宝藏。
在他离世之后留给后人一个难题(专门考验记忆力的啊!),如果谁能轻松回答出这个问题,便可以继承他的宝藏。
题目是这样的:给你一大串数字(编号为 1 到 N,大小可不一定哦!),在你看过一遍之后,它便消失在你面前,随后问题就出现了,给你 M 个询问,每次询问就给你两个数字 A,B,要求你瞬间就说出属于 A 到 B 这段区间内的最大数。
一天,一位美丽的姐姐从天上飞过,看到这个问题,感到很有意思(主要是据说那个宝藏里面藏着一种美容水,喝了可以让这美丽的姐姐更加迷人),于是她就竭尽全力想解决这个问题。
但是,她每次都以失败告终,因为这数字的个数是在太多了!
于是她请天才的你帮他解决。如果你帮她解决了这个问题,可是会得到很多甜头的哦!

【输入格式】
第一行一个整数 N 表示数字的个数。
接下来一行为 N 个数,表示数字序列。
第三行读入一个 M,表示你看完那串数后需要被提问的次数。
接下来 M 行,每行都有两个整数 A,B。

【输出格式】
输出共 M 行,每行输出一个数,表示对一个问题的回答。

【数据范围】
1≤N≤2×10^5,
1≤M≤10^4,
1≤A≤B≤N。

【输入样例】
6
34 1 8 123 3 2
4
1 2
1 5
3 4
2 3

【输出样例】
34
123
123
8

【算法分析】
● ST算法(Sparse Table,稀疏表):
https://blog.csdn.net/hnjzsyjyj/article/details/103429761

● 信息学竞赛中,经常会出现RMQ问题,即求区间最大(小)值问题。那么,我们该如何求解呢?ST算法横空出世。 
ST算法(Sparse Table,稀疏表)主要用于解决区间最值问题(即RMQ问题)。因为ST算法求解RMQ问题时的时间复杂度只有O(nlogn),查询时间复杂度为常数阶O(1),所以我们还常称
ST算法为TLE的死敌。虽然还可以使用线段树、树状数组、splay等算法求解区间最值问题,但是ST算法比它们更快,更适用于在线查询。
ST算法分成两部分:离线预处理O(nlogn)和在线查询O(1)。
(1)离线预处理:运用DP思想求解区间最值,并将结果保存到一个二维数组中。
(2)在线查询:对给定区间进行分割,并借助上步中的二维数组求最值

● 本题利用了
ST算法求解RMQ问题,ST算法分预处理及询问两部分。要理解ST算法,首先要注意下文表述中的移位运算符 >>及<< 的优先级比四则运算 +-*/ 的优先级高。这样就能理解 1<<(j-1) 及 1<<j-1 代表不同的运算,即 1<<(j-1) 等价于 2^(j-1), 1<<j-1  等价于 2^j-1
1. 预处理
ST算法首先约定用 a[1] ~ a[n] 表示给定的一组数,
f[i][j]表示从 a[i] ~ a[i+1<<j-1] 范围内的最大值,也即以 a[i] 为起点的连续 2^j 个数的最大值(∵ a[x] ~ a[y] 包含有 y-x+1 个数)。由于ST算法用到了倍增思想,因此自然有将 2^j 个数从中间平均分成两等分的实践,显然每一部分有 1<<(j-1) 个数,即2^(j-1) 个数。显然,初始范围 a[i] ~ a[i+1<<j-1] 被等分后,第一部分范围为 a[i] ~a[i+1<<(j-1)-1],第二部分范围为 a[i+1<<(j-1)] ~ a[i+1<<j-1],分别对应于f[i][j-1]和f[i+1<<(j-1)][j-1]。
综上,得
f[i][j]=max(f[i][j-1],f[i+(1<<(j-1))][j-1])

2. 查询
若给定查询区间 [x,y],若利用ST算法求此区间内的最大值。则需先求出最大的 k,使之满足
2^k ≤ y-x+1
在此基础上,区间
[x,y]=[x,x+2^k-1]∪[y-2^k+1,y],则区间 [x,y] 内的最大值为 max(f[x][k],f[y-(1<<k)+1][k])

据上,利用ST算法查询区间 [x,y] 的最大值,计算式如下:
k=log2(y-x+1)
max(f[x][k],f[y-(1<<k)+1][k])


【算法代码】

#include<bits/stdc++.h>
using namespace std;const int maxn=2e5+5;
const int maxm=18; //∵log(2e5)<18
int a[maxn];
int f[maxn][maxm]; //f[i][j]表示从i位起的2^j个数中的最大数int main() {int n,m,x,y;scanf("%d",&n);for(int i=1; i<=n; i++) {scanf("%d",&a[i]); //数组a的下标从1开始f[i][0]=a[i]; //f[i][0]表示[i,i]中的最大值,只能是a[i],故f[i][0]=a[i]}for(int j=1; j<=log2(n); j++)for(int i=1; i+(1<<j)-1<=n; i++) //注意i的右端点为i+(1<<j)-1,不能越界f[i][j]=max(f[i][j-1],f[i+(1<<(j-1))][j-1]); //预处理scanf("%d",&m);for(int i=1; i<=m; i++) { //查询scanf("%d%d",&x,&y);int k=log2(y-x+1);printf("%d\n",max(f[x][k],f[y-(1<<k)+1][k]));}return 0;
}/*
in:
6
34 1 8 123 3 2
4
1 2
1 5
3 4
2 3out:
34
123
123
8
*/





【参考文献】
https://blog.csdn.net/hnjzsyjyj/article/details/103429761
https://www.acwing.com/solution/content/14969/





 

这篇关于AcWing 1273:天才的记忆 ← ST算法求解RMQ问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071420

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

如何解决Spring MVC中响应乱码问题

《如何解决SpringMVC中响应乱码问题》:本文主要介绍如何解决SpringMVC中响应乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC最新响应中乱码解决方式以前的解决办法这是比较通用的一种方法总结Spring MVC最新响应中乱码解

pip无法安装osgeo失败的问题解决

《pip无法安装osgeo失败的问题解决》本文主要介绍了pip无法安装osgeo失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 进入官方提供的扩展包下载网站寻找版本适配的whl文件注意:要选择cp(python版本)和你py

解决Java中基于GeoTools的Shapefile读取乱码的问题

《解决Java中基于GeoTools的Shapefile读取乱码的问题》本文主要讨论了在使用Java编程语言进行地理信息数据解析时遇到的Shapefile属性信息乱码问题,以及根据不同的编码设置进行属... 目录前言1、Shapefile属性字段编码的情况:一、Shp文件常见的字符集编码1、System编码

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图

Redis解决缓存击穿问题的两种方法

《Redis解决缓存击穿问题的两种方法》缓存击穿问题也叫热点Key问题,就是⼀个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击,本文给大家介绍了Re... 目录引言解决办法互斥锁(强一致,性能差)逻辑过期(高可用,性能优)设计逻辑过期时间引言缓存击穿:给