分布式系统如何做到海量数据边云协同?看 TDengine 油气领域解决方案

本文主要是介绍分布式系统如何做到海量数据边云协同?看 TDengine 油气领域解决方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在某大型油田生产管理方案中,用户需要实现生产现场的自动化采集与控制、生产视频系统、工业物联网、生产数据服务、智能化生产管控应用以及各个环节的信息化采集标准建设等内容。在 TDengine 的帮助下,该大型项目成功完成了技术优化升级。本篇文章将就本次优化工作进行进一步的分析解读,给到大家参考。

TDengine 应用历程

这个项目此前的应用系统主要采用 Oracle 来存储和处理时序数据,但随着使用时间的增加,数据存储量越来越大,实时数据存储和处理的问题日益凸显,技术优化也遇到了瓶颈:

  1. 在处理复杂查询和聚合大数据集时写入和查询效率大幅衰减,系统出现明显的性能下降;
  2. 数据占用了越来越多的磁盘空间,给运维资源带来较大压力;
  3. 分布式的企业管理模式下基于应用本身的数据协同效率低下,无法满足企业应用的数据同步需求。

为了解决这些问题,用户进行了多方技术方案验证,并最终选择使用 TDengine 替换 Oracle 来存储时序数据。通过 TDengine 的边云协同技术,实现了边缘数据向云端的实时汇聚。

接下来,我们将对 TDengine 应用的主要场景进行深入分析。通过详细探讨 TDengine 在各个应用场景下的优势和应用效果,大家可以更好地了解其在实际项目中的价值和作用。

场景一:数据质量提升

一般来说,在实际应用中,生产现场采集的大量实时数据主要存储在工控系统中,对于支撑应用的数据质量难以保障。架构优化之后,现场实时数据将批量写入 TDengine(同批次数据包含不同井或设备的数据)。这一优化措施显著提高了数据的准确性和一致性,进一步优化系统性能,确保数据的可靠性和完整性。

此外,TDengine 也实现了对非实时数据的补录,补录中如果产生数据碎片,以及日常使用中产生的数据碎片,均可以通过 compact 功能在线重整数据文件解决。

场景二:数据服务性能优化

我们依托多个参数的历史曲线查询功能,通过数据分析和可视化能力,实现了对单井生产设备的实时监控与历史数据查询。该功能主要基于多参数的数据源,涵盖了涉及 TDengine 和关系型数据库的多个数据源取值,通过 TDengine 快速高效的查询,获取历史数据并生成曲线图。

通过自定义指标配置项,用户可以根据实际需求调整指标计算公式,生成个性化的结果数据,满足不同层级管理人员对数据展示的需求。

场景三:数据同步效率和存储优化

在这个重要环节,我们利用到了 TDengine 边云协同的重要特性——即对多个不同的 TDengine 服务的全量历史数据以及后续新增的数据,实时同步至云端 TDengine。

作为 TDengine 的一部分,taosX 工具仅需要在数据接收方一侧部署,仅需一行命令便可以完成实时同步、历史数据迁移,以及二者混合的三种数据处理方案。

例如:同步某台服务器的 db1 的历史数据以及实时数据到本地的 db2 数据库仅需执行如下一条命令即可。

taosx run -f 'taos://192.168.1.101:6030/db1?mode=all' -t 'taos://localhost:6030/db2' -v

另外,taosX 也提供了基于数据订阅方式(利用 TDengine 的 wal 日志)实时数据同步,以事件到达顺序处理数据,无论是实时数据还是历史数据的写入,都会实时同步到目标集群,不会丢失补录的历史数据。

通过该方案的实施,多个 TDengine 服务通过 taosX 跨省实时同步数据至云端总部集群。目前 TDengine 总部集群存储的数据量已经达到了 36 TB,总数据量 1034 亿+条,压缩率达到了 10% 以内。

写在最后

对于该项目来说,在将 Oracle 整体切换至 TDengine 之后优化效果明显,主要体现在如下几个方面:

  1. 数据插入性能变高,硬件资源减少;
  2. 集群支持在线水平扩展,轻松应对未来扩容需求;
  3. 灵活定义数据的生命周期,方便过期数据管理;
  4. 秒级 500 万测点的同步速率,满足了用户边云协同场景需求。

随着边云协同功能在各个复杂庞大的业务场景下成功落地,TDengine 也展现出了更强大的数据处理能力和更灵活的架构,能够更好地适应工业物联网环境下复杂多变的数据处理和存储需求,为工业物联网的发展提供有力支持和保障。

这篇关于分布式系统如何做到海量数据边云协同?看 TDengine 油气领域解决方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1069808

相关文章

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

python 字典d[k]中key不存在的解决方案

《python字典d[k]中key不存在的解决方案》本文主要介绍了在Python中处理字典键不存在时获取默认值的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录defaultdict:处理找不到的键的一个选择特殊方法__missing__有时候为了方便起见,

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

更改docker默认数据目录的方法步骤

《更改docker默认数据目录的方法步骤》本文主要介绍了更改docker默认数据目录的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1.查看docker是否存在并停止该服务2.挂载镜像并安装rsync便于备份3.取消挂载备份和迁

不删数据还能合并磁盘? 让电脑C盘D盘合并并保留数据的技巧

《不删数据还能合并磁盘?让电脑C盘D盘合并并保留数据的技巧》在Windows操作系统中,合并C盘和D盘是一个相对复杂的任务,尤其是当你不希望删除其中的数据时,幸运的是,有几种方法可以实现这一目标且在... 在电脑生产时,制造商常为C盘分配较小的磁盘空间,以确保软件在运行过程中不会出现磁盘空间不足的问题。但在

Linux限制ip访问的解决方案

《Linux限制ip访问的解决方案》为了修复安全扫描中发现的漏洞,我们需要对某些服务设置访问限制,具体来说,就是要确保只有指定的内部IP地址能够访问这些服务,所以本文给大家介绍了Linux限制ip访问... 目录背景:解决方案:使用Firewalld防火墙规则验证方法深度了解防火墙逻辑应用场景与扩展背景:

SpringBoot嵌套事务详解及失效解决方案

《SpringBoot嵌套事务详解及失效解决方案》在复杂的业务场景中,嵌套事务可以帮助我们更加精细地控制数据的一致性,然而,在SpringBoot中,如果嵌套事务的配置不当,可能会导致事务不生效的问题... 目录什么是嵌套事务?嵌套事务失效的原因核心问题:嵌套事务的解决方案方案一:将嵌套事务方法提取到独立类

Java如何接收并解析HL7协议数据

《Java如何接收并解析HL7协议数据》文章主要介绍了HL7协议及其在医疗行业中的应用,详细描述了如何配置环境、接收和解析数据,以及与前端进行交互的实现方法,文章还分享了使用7Edit工具进行调试的经... 目录一、前言二、正文1、环境配置2、数据接收:HL7Monitor3、数据解析:HL7Busines

Spring Boot实现多数据源连接和切换的解决方案

《SpringBoot实现多数据源连接和切换的解决方案》文章介绍了在SpringBoot中实现多数据源连接和切换的几种方案,并详细描述了一个使用AbstractRoutingDataSource的实... 目录前言一、多数据源配置与切换方案二、实现步骤总结前言在 Spring Boot 中实现多数据源连接