决策树算法:揭示数据背后的决策逻辑

2024-06-16 14:20

本文主要是介绍决策树算法:揭示数据背后的决策逻辑,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一 决策树算法原理

特征选择

信息增益

信息增益比

基尼指数

树的构建

树的剪枝

预剪枝

后剪枝

二 决策树算法实现

一 使用决策树进行分类

数据预处理

构建决策树模型

二 使用决策树进行回归

数据预处理

构建决策树回归模型

三 决策树算法的优缺点

优点

缺点

四 决策树的改进与扩展

随机森林

梯度提升树

剪枝算法

特征选择策略

五 结论


在数据科学和机器学习领域,决策树是一种广泛应用的监督学习算法。它以树状结构直观地表示决策过程,通过一系列的简单判断逐步分类或回归数据。由于其易于理解和解释,决策树被广泛应用于各种实际问题,如金融风险评估、医疗诊断和市场营销策略等。本文将深入探讨决策树算法的原理,展示其在分类和回归任务中的应用,并通过具体案例实现,帮助读者全面掌握这一重要的机器学习算法。

一 决策树算法原理

决策树是一种基于树结构的模型,分为分类树和回归树两种。分类树用于离散型目标变量的分类任务,而回归树则用于连续型目标变量的回归任务。决策树的构建过程涉及特征选择、树的构建和剪枝等关键步骤。

特征选择

在决策树的构建过程中,特征选择是关键步骤之一。特征选择的目的是在每个节点选择一个最佳特征,将数据集划分为纯度最高的子集。常用的特征选择准则包括信息增益、信息增益比和基尼指数。

信息增益

信息增益是基于熵(Entropy)的概念来衡量特征对数据集分类的不确定性减少的程度。信息增益越大,特征越好。信息增益的计算公式为:

其中,D表示数据集,A表示特征,Dv​表示特征A取值为v的数据子集。

信息增益比

信息增益比是对信息增益的改进,考虑了特征取值的数量差异。信息增益比的计算公式为:

其中,熵A(D)是特征A的熵。

基尼指数

基尼指数是一种衡量数据集纯度的指标,基尼指数越小,数据集的纯度越高。基尼指数的计算公式为:

其中,pi表示第i类的概率。

树的构建

决策树的构建过程是一个递归划分数据集的过程,直到满足停止条件。具体步骤如下:

  1. 选择最佳特征:根据特征选择准则选择一个最佳特征。
  2. 划分数据集:根据最佳特征的取值将数据集划分为若干子集。
  3. 递归构建子树:对每个子集递归地重复上述步骤,构建子树,直到满足停止条件。

停止条件通常包括以下几种情况:

  • 所有样本属于同一类别。
  • 没有可分裂的特征。
  • 树的深度达到预设的最大深度。
  • 子集中的样本数量小于预设的最小样本数。

树的剪枝

决策树容易过拟合,因此需要进行剪枝来简化模型,提高泛化能力。剪枝分为预剪枝和后剪枝。

预剪枝

预剪枝在构建决策树的过程中进行,通过设置一些条件提前停止树的生长,如限制树的最大深度、最小样本数等。预剪枝的优点是简单易行,但可能导致欠拟合。

后剪枝

后剪枝是在构建完整决策树之后进行,通过剪去一些子树,合并节点来简化模型。常用的后剪枝方法包括代价复杂度剪枝(Cost Complexity Pruning)和错误率剪枝(Error Rate Pruning)。后剪枝通常能取得更好的效果,但计算开销较大。

这篇关于决策树算法:揭示数据背后的决策逻辑的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1066676

相关文章

SpringBatch数据写入实现

《SpringBatch数据写入实现》SpringBatch通过ItemWriter接口及其丰富的实现,提供了强大的数据写入能力,本文主要介绍了SpringBatch数据写入实现,具有一定的参考价值,... 目录python引言一、ItemWriter核心概念二、数据库写入实现三、文件写入实现四、多目标写入

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

Mysql如何将数据按照年月分组的统计

《Mysql如何将数据按照年月分组的统计》:本文主要介绍Mysql如何将数据按照年月分组的统计方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql将数据按照年月分组的统计要的效果方案总结Mysql将数据按照年月分组的统计要的效果方案① 使用 DA

鸿蒙中Axios数据请求的封装和配置方法

《鸿蒙中Axios数据请求的封装和配置方法》:本文主要介绍鸿蒙中Axios数据请求的封装和配置方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.配置权限 应用级权限和系统级权限2.配置网络请求的代码3.下载在Entry中 下载AxIOS4.封装Htt

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T