大数据—“西游记“全集文本数据挖掘分析实战教程

2024-06-15 21:44

本文主要是介绍大数据—“西游记“全集文本数据挖掘分析实战教程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

项目背景介绍

四大名著,又称四大小说,是汉语文学中经典作品。这四部著作历久不衰,其中的故事、场景,已经深深地影响了国人的思想观念、价值取向。四部著作都有很高的艺术水平,细致的刻画和所蕴含的思想都为历代读者所称道。

本次将以小说《西游记》为例,介绍中文文本的统计分析和文本发掘等方面的基本知识。

数据准备

关于怎样获取小说,本文就不展示了,通过了一点技术手段,从某小说网站源代码里提取的,共101回(章)。

提取出来是长成下图这样的:
在这里插入图片描述

文件处理: 如果大家文件不是“.txt”结尾的,比如我的macbook显示的就是可执行文件,可以通过下面的代码批量修改为“*.txt”的文本文件。

import os
import glob# 获取当前目录下的所有文件
files = glob.glob('/Users/c/PycharmProjects/pythonProject/spyder/爬虫/百度小说/(异步爬虫)西游记/*')# 遍历文件列表,为每个文件添加.txt后缀
for file in files:# 检查文件是否已经是.txt格式if not file.endswith('.txt'):# 为文件添加.txt后缀new_file = file + '.txt'# 重命名文件os.rename(file, new_file)

文本处理:
现在需要将101回全部合并到一个文本文件里,用手复制吗?NO,肯定是用代码搞定了。

import os
import glob# 获取所有txt文件
txt_files = glob.glob('/Users/c/PycharmProjects/pythonProject/spyder/爬虫/百度小说/(异步爬虫)西游记/*.txt')# 创建一个新的文件用于存储合并后的内容
with open('合并文本.txt', 'w', encoding='utf-8') as merged_file:# 遍历所有txt文件for file in txt_files:# 读取文件内容with open(file, 'r', encoding='utf-8') as f:content = f.read()# 将文件内容写入到新文件中merged_file.write(content)merged_file.write('\n')  # 在每个文件内容之间添加换行符

合并后长这样,可以仔细看第一行和最后一行就明白了:

在这里插入图片描述

项目流程

获取文本:

# 获取文本数据
with open('/Users/c/jupyter lab/练习/合并文本.txt','r',encoding='utf-8')as f:text = f.read()
import jieba# 分词并统计词频
def wordFreq(text,topn):words = jieba.lcut(text.strip()) # 对文本进行分词操作counts = {}for word in words:  # 统计每个词出现的频率,存放在字典counts中if len(word) == 1:  # 如果该词的长度为1,则跳过,不参与统计。continuecounts[word] = counts.get(word,0) + 1items = list(counts.items())items.sort(key=lambda x:x[1],reverse=True)  # 按照词频进行排序f = open('HLM_词频.txt','w',encoding='utf-8')for i in range(topn):  # topn表示要取的词的个数,将频率最高的topn个词及其频率数存放在文件中word,count = items[i]f.writelines("{}\t{}\n".format(word,count))f.close() wordFreq(text,20)  # 这里我们提取出频率最高的前20个词

上面我们读取了文本,首先进行文本分词,不统计字符长度为1的词语,将分词后按词语出现的总次数(频数)进行降序排列保存至’HLM_词频.txt’文件内,见下图,词语出现最多的是行者,出现了4012次,毕竟是主角。

在这里插入图片描述

我们还可以去除停用词,也就是你不想统计的词语,在上面代码的基础上修改即可,就不展示结果了,只上代码。

# 分词并统计词频
def wordFreq(text,topn):words = jieba.lcut(text.strip()) # 对文本进行分词操作# 加载停用词库stopwords = [line.strip() for line in open('停用词库.txt','r',encoding='utf-8').readlines()]counts = {}for word in words:  # 统计每个词出现的频率,存放在字典counts中if len(word) == 1:  # 如果该词的长度为1,则跳过,不参与统计。continueelif word not in stopwords:  # 如果该词不在停用词列表stopwords中,才参与统计counts[word] = counts.get(word,0) + 1items = list(counts.items())items.sort(key=lambda x:x[1],reverse=True)  # 按照词频进行排序f = open('HLM_词频.txt','w',encoding='utf-8')for i in range(topn):  # topn表示要取的词的个数,将频率最高的topn个词及其频率数存放在文件中word,count = items[i]f.writelines("{}\t{}\n".format(word,count))f.close() 

注意的是需要将不想统计的词语提前存入文本文件内。

绘制词云图:

# 绘制词云
import matplotlib.pyplot as plt
import wordcloud
import imageio
wordFreq(text,500)  # 获取TOP500的词频
word_cloud_text = open('HLM_词频.txt','r',encoding='utf-8').read()
bg_pic = imageio.imread('WechatIMG436.jpg') # 读入形状图片
wc = wordcloud.WordCloud(font_path='/Library/Fonts/Arial Unicode.ttf',background_color='white',width=1000,max_words=200,mask=bg_pic,  # mask参数设置词云形状height=860,margin=2).generate(word_cloud_text)
wc.to_file('HLMcloud_star.png')  # 保存图片

在这里插入图片描述
老规矩给大家科谱一下怎样看词云图:上图是用出现次数最多的前500词语进行绘制的。

词云图 是一种可视化表示文本数据的方法,通过使不同频率的词汇以不同的字体大小显示出来,形成一种视觉上的“云”效果。它被广泛用于展示大量的文本数据中的关键词,直观地显示各个词的重要性和频率。以下是具体介绍:

使用场景:

  • 词云图可以在不同的形状模板中生成,如圆形、心形、菱形等,增加视觉效果。
  • 支持多种颜色配色方案,用户可以根据需要选择合适的配色。
  • 在线工具如易词云提供分词功能,特别适合中文文本的处理。
  • 能够导出为常用的图像格式(如jpg, png)或pdf文件,方便分享和展示。

技术实现:

  • 许多在线词云图生成器支持用户直接上传文本或Excel文件,并自动统计词频生成词云图。
  • 部分工具允许用户自定义词云图中的文字大小、间隙和旋转角度等参数。
  • 高级用户可以通过JSON配置编辑ECharts图表参数,实现更高级的个性化设置。

操作指南:

  • 在设计词云图时,建议每行文字保持在2到6个字之间,以获得最佳显示效果。
  • 当使用自选图片模式时,如果图片分辨率较高,则可以适当增加内容;反之,则应减少内容以防生成的词云图过于拥挤。
  • 对于自选形状模式,不建议设置过多内容,以免形状不明显,影响最终效果。

优化建议:

  • 考虑使用轮廓图片,使词云图沿着轮廓图片的非白色区域延申,增加视觉效果。
  • 合理利用停用词功能来排除无关的常见词汇,使关键内容更突出。

开源工具:

  • 可以利用如jieba分词增强词云图的中文处理能力,highcharts提供的词云图生成js等开源工具进行高度定制的开发。

官方的东西说半天没说到重点,我来总结就是字体越大,代表文本中出现的次数越多。

章回处理

已知我们已将101个文本文件合并到了一起,我们现在需要做一个工作就是统计每回合有多少字,是从多少至多少,听着很难,做着试试吧。

# 章回处理
import re
chapter = re.findall('第[\u4e00-\u9fa5]+回',text)
lst_chapter = []
for x in chapter:  # 去除重复的章节if x not in lst_chapter and len(x)<=5:lst_chapter.append(x)
print(lst_chapter)

运行代码看看:
在这里插入图片描述
通过正则匹配,找到文中所有“第**回”形式的字符。

获取每一回起始和结束共计多少字符:

lst_start_chapterIndex = []
for x in lst_chapter:  # 找出每一回在原文中的起始位置lst_start_chapterIndex.append(text.index(x))lst_end_chapterIndex = lst_start_chapterIndex[1:]+[len(text)]  # 找出每一回在原文中的结束位置,本回的结束位置就是下一回的起始位置。最后一回的结束位置就是全文的结束。zip将每一回的起始和结束位置拼成一个元组,存放在lst_chapterindex列表中。
lst_chapterIndex = list(zip(lst_start_chapterIndex,lst_end_chapterIndex))
print(lst_chapterIndex)

运行代码看到的就是区间数据:
在这里插入图片描述
下面用简单难看的折线图来展示每回合行者出现的次数(好看的图画着都很费力),原著里好像说的悟空叫行者,反正我没看过。

# 统计行者出现的次数
cnt_liulaolao = []
for i in range(99):start = lst_chapterIndex[i][0]end = lst_chapterIndex[i][1]cnt_liulaolao.append(text[start:end].count('行者'))
plt.rcParams['font.sans-serif'] = ['SimHei'] #解决中文显示
plt.rcParams['axes.unicode_minus'] = False   #解决符号无法显示
plt.figure(figsize=(15,6))
plt.plot(range(99),cnt_liulaolao,label='行者出场次数')
plt.title('《西游记》——孙行者暴打各路妖怪',fontdict={'fontsize':14})
plt.xlabel('章节数',fontdict={'fontsize':14})
plt.ylabel('出现次数',fontdict={'fontsize':14})
plt.legend()
plt.show()

在这里插入图片描述
打个小结,学会以上的文本方法,在工作中分析点小文本就太简单了。

创作不易,点赞,评论,转发三连走起!

这篇关于大数据—“西游记“全集文本数据挖掘分析实战教程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1064660

相关文章

Window Server创建2台服务器的故障转移群集的图文教程

《WindowServer创建2台服务器的故障转移群集的图文教程》本文主要介绍了在WindowsServer系统上创建一个包含两台成员服务器的故障转移群集,文中通过图文示例介绍的非常详细,对大家的... 目录一、 准备条件二、在ServerB安装故障转移群集三、在ServerC安装故障转移群集,操作与Ser

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

windos server2022的配置故障转移服务的图文教程

《windosserver2022的配置故障转移服务的图文教程》本文主要介绍了windosserver2022的配置故障转移服务的图文教程,以确保服务和应用程序的连续性和可用性,文中通过图文介绍的非... 目录准备环境:步骤故障转移群集是 Windows Server 2022 中提供的一种功能,用于在多个

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

龙蜥操作系统Anolis OS-23.x安装配置图解教程(保姆级)

《龙蜥操作系统AnolisOS-23.x安装配置图解教程(保姆级)》:本文主要介绍了安装和配置AnolisOS23.2系统,包括分区、软件选择、设置root密码、网络配置、主机名设置和禁用SELinux的步骤,详细内容请阅读本文,希望能对你有所帮助... ‌AnolisOS‌是由阿里云推出的开源操作系统,旨

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st