【数据挖掘】机器学习中相似性度量方法-欧式距离

2024-06-15 08:52

本文主要是介绍【数据挖掘】机器学习中相似性度量方法-欧式距离,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面:
首先感谢兄弟们的订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。

路虽远,行则将至;事虽难,做则必成。只要有愚公移山的志气、滴水穿石的毅力,脚踏实地,埋头苦干,积跬步以至千里,就一定能够把宏伟目标变为美好现实。

最近在做实际项目时,遇到需要计算两个向量的相似性,即需要计算不同数据样本之间的相似度。计算样本之间相似度的方法有很多,也很有学问,直接影响后续的计算结果。

本次将持续更新“相似性度量(similarity measurement)”系列文章,今天先介绍欧式距离

在这里插入图片描述

1、欧式距离

欧式距离(Euclidean Distance)是一种在多维空间中测量两个点之间“直线”距离的方法。在二维和三维空间中,欧氏距离就是两点之间的实际距离,即我们通常所说的“直线距离”。在更高维的空间中,这个概念依然适用,只是我们无法直接可视化这种距离。

2、计算公式

2.1 二维平面

二维平面两个点A( x 1 , y 1 x_ 1, y_ 1 x1,y1)和B( x 2 , y 2 x_ 2, y_ 2 x2,y2)之间的欧式距离:
d ( A , B ) = ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 \ d(A,B) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 }  d(A,B)=(x1x2)2+(y1y2)2

2.2 三维空间

三维空间两个点A( x 1 , y 1 , z 1 x_ 1,y_ 1, z_ 1 x1,y1,z1)和B( x 2 , y 2 , z 2 x_ 2,y_ 2, z_ 2 x2,y2,z2)之间的欧式距离:

d ( A , B ) = ( x 1 − y 1 ) 2 + ( x 2 − y 2 ) 2 + ( z 1 − z 2 ) 2 \ d(A,B) = \sqrt{(x_1 - y_1 )^2 + (x_2 - y_2)^2 + (z_1 - z_2)^2}  d(A,B)=(x1y1)2+(x2y2)2+(z1z2)2

2.3 高维空间

两个向量A( x 1 , x 2 , x 3 , . . . , x n x_ 1,x_ 2, x_ 3, ..., x_ n x1,x2,x3,...,xn)和B( y 1 , y 2 , y 3 , . . . , y n y_ 1,y_ 2, y_ 3,..., y_ n y1,y2,y3,...,yn)之间的欧式距离

d ( A , B ) = ( x 1 − y 1 ) 2 + ( x 2 − y 2 ) 2 + … + ( x n − y n ) 2 \ d(A,B) = \sqrt{(x_1 - y_1 )^2 + (x_2 - y_2)^2 + \ldots + (x_n - y_n)^2}  d(A,B)=(x1y1)2+(x2y2)2++(xnyn)2

3、代码实现

编写代码实现欧式距离,在Python中,可以使用numpy库或者scipy来计算两个向量之间的欧式距离:

# -*- coding: utf-8 -*-
"""
Created on Fri Jun 14 22:36:45 2024@author: AIexplore微信公众号
"""import numpy as np  
from scipy.spatial.distance import euclidean  def euclidean_distance_1(vec1, vec2):  """  计算两个向量之间的欧式距离  参数:  vec1 -- 第一个向量,numpy数组  vec2 -- 第二个向量,numpy数组  返回:  dist -- 两个向量之间的欧式距离  """  dist = np.sqrt(np.sum((vec1 - vec2)**2))  return dist  def euclidean_distance_2(vec1, vec2):  dist = euclidean(vec1, vec2)return dist # data
vec1 = np.array([1, 2, 3])  
vec2 = np.array([4, 5, 6])  # 使用numpy计算欧式距离
d1 = euclidean_distance_1(vec1, vec2)
print("欧式距离 1:", d1)# 使用scipy的euclidean函数计算欧式距离  
d2 = euclidean_distance_2(vec1, vec2)  
print("欧式距离 2:", d2)
  • 使用numpy计算欧式距离

euclidean_distance_1函数接受两个numpy数组作为参数,并返回它们之间的欧式距离。函数内部,使用numpy的sqrt函数和sum函数来计算平方差的总和的平方根,从而得到欧式距离。

  • 使用scipy计算欧式距离

首先从scipy.spatial.distance模块中导入了euclidean函数。然后,定义了两个numpy数组vec1和vec2,它们分别代表两个点或向量的坐标。最后,调用euclidean_distance_2函数并传入这两个向量作为参数,得到了它们之间的欧式距离。

参考文章

1、https://mp.weixin.qq.com/s/zBHt9A-4FV4tsnSDRfBy-g
2、https://mp.weixin.qq.com/s/g1-U59Xo7ScjscyrL61Ujw
3、https://www.cnblogs.com/heaad/archive/2011/03/08/1977733.html

这篇关于【数据挖掘】机器学习中相似性度量方法-欧式距离的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1062986

相关文章

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

Windows 上如果忘记了 MySQL 密码 重置密码的两种方法

《Windows上如果忘记了MySQL密码重置密码的两种方法》:本文主要介绍Windows上如果忘记了MySQL密码重置密码的两种方法,本文通过两种方法结合实例代码给大家介绍的非常详细,感... 目录方法 1:以跳过权限验证模式启动 mysql 并重置密码方法 2:使用 my.ini 文件的临时配置在 Wi

MySQL重复数据处理的七种高效方法

《MySQL重复数据处理的七种高效方法》你是不是也曾遇到过这样的烦恼:明明系统测试时一切正常,上线后却频频出现重复数据,大批量导数据时,总有那么几条不听话的记录导致整个事务莫名回滚,今天,我就跟大家分... 目录1. 重复数据插入问题分析1.1 问题本质1.2 常见场景图2. 基础解决方案:使用异常捕获3.

最详细安装 PostgreSQL方法及常见问题解决

《最详细安装PostgreSQL方法及常见问题解决》:本文主要介绍最详细安装PostgreSQL方法及常见问题解决,介绍了在Windows系统上安装PostgreSQL及Linux系统上安装Po... 目录一、在 Windows 系统上安装 PostgreSQL1. 下载 PostgreSQL 安装包2.

SQL中redo log 刷⼊磁盘的常见方法

《SQL中redolog刷⼊磁盘的常见方法》本文主要介绍了SQL中redolog刷⼊磁盘的常见方法,将redolog刷入磁盘的方法确保了数据的持久性和一致性,下面就来具体介绍一下,感兴趣的可以了解... 目录Redo Log 刷入磁盘的方法Redo Log 刷入磁盘的过程代码示例(伪代码)在数据库系统中,r

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Java中Switch Case多个条件处理方法举例

《Java中SwitchCase多个条件处理方法举例》Java中switch语句用于根据变量值执行不同代码块,适用于多个条件的处理,:本文主要介绍Java中SwitchCase多个条件处理的相... 目录前言基本语法处理多个条件示例1:合并相同代码的多个case示例2:通过字符串合并多个case进阶用法使用

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

html5的响应式布局的方法示例详解

《html5的响应式布局的方法示例详解》:本文主要介绍了HTML5中使用媒体查询和Flexbox进行响应式布局的方法,简要介绍了CSSGrid布局的基础知识和如何实现自动换行的网格布局,详细内容请阅读本文,希望能对你有所帮助... 一 使用媒体查询响应式布局        使用的参数@media这是常用的