新一代大核卷积反超ViT和ConvNet!同参数量下性能、精度、速度完胜

本文主要是介绍新一代大核卷积反超ViT和ConvNet!同参数量下性能、精度、速度完胜,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大核卷积网络是CNN的一种变体,也是深度学习领域的一种重要技术,它使用较大的卷积核来处理图像数据,以提高模型对视觉信息的理解和处理能力。

这种类型的网络能够捕捉到更多的空间信息,因为它的大步长和大感受野可以一次性覆盖图像的更多区域。比如美团提出的PeLK网络,内核大小可以达到101x101,同参数量下性能反超 ViT,目前已被CVPR 2024收录。

更值得一提的,大核卷积网络不仅在性能上有所提升,在ImageNet分类等任务上,也展现出了优于ViT和ConvNet架构的效果。比如腾讯+港中文提出的UniRepLKNet,只用ImageNet-22K预训练,精度和速度SOTA,ImageNet达到88%。

当然效果惊人的成果远不止这些,我这次挑选了10个大核卷积网络最新创新方案,开源的项目代码都有,供有论文需求的同学参考学习。

论文原文以及开源代码需要的同学看文末

PeLK: Parameter-efficient Large Kernel ConvNets with Peripheral Convolution

方法:论文提出了外围卷积,通过参数共享有效减少了密集网格卷积 90% 以上的参数数量,并设法将内核尺寸扩大到极大。在此基础上,作者提出了参数高效的大核网络(PeLK)。

创新点:

  • 密集网格卷积(Dense Grid Convolution)相较于条纹卷积(Stripe Convolution)具有持续的优势,无论是在多种核大小下还是在不同的任务中,密集网格卷积都能够表现出更好的性能。

  • 引入人类外周视觉机制(Peripheral Vision)的概念来提高大核卷积网络的参数效率,通过参数共享有效地减少了密集网格卷积的参数数量,并且能够将卷积的复杂性从O(K^2)降低到O(log K)。

UniRepLKNet: A Universal Perception Large-Kernel ConvNet for Audio, Video, Point Cloud, Time-Series and Image Recognition

方法:论文探索了大卷积核的卷积神经网络(ConvNet)的架构设计和在多模态领域的通用感知能力,填补了现有大卷积核ConvNet的架构设计不足和在非视觉领域的应用研究空白,通过提出四个架构准则设计了UniRepLKNet,并在图像识别、时间序列预测和音频识别等任务上取得了领先的性能,验证了大卷积核的重要性和ConvNet的通用感知能力。

创新点:

  • 大核ConvNet架构设计:
    • 提出了四个关于大核ConvNet设计的指导原则,其中核心原则是利用大核与小核的本质区别,即大核可以在不加深网络的情况下实现更广阔的感受野。

    • 根据这些指导原则,提出的大核ConvNet在图像识别任务中取得了领先的性能,相比于其他强大的竞争模型,具有更好的性能和更高的速度。

  • 大核ConvNet在多模态领域的普适感知能力:
    • 发现大核ConvNet在原本不擅长的领域具有出色的性能表现。通过特定的模态相关预处理方法,该模型在时间序列预测和音频识别任务上实现了业界领先的性能,即使没有进行模态特定的架构定制化。

    • 证明了大核ConvNet在多模态任务中的卓越性能,为ConvNet在新领域的应用开辟了新的可能性。

LSKNet: Large Selective Kernel Network for Remote Sensing Object Detection

方法:论文主要介绍了一种用于遥感目标检测的新方法,即大型选择性核网络(LSKNet)。LSKNet的整体架构基于最近流行的结构,并使用了重复的构建块。作者通过定义Rc作为期望选择RF区域与GT边界框区域的比例来研究每个目标类别的感受野范围。

创新点:

  • 作者首次尝试将大核卷积应用于遥感目标检测,并研究了其在这一领域的重要性。通过将大核卷积分解为两个深度卷积核,作者提出了一种适用于遥感的LSKNet架构,能够充分利用遥感图像的特点,实现对不同对象类型的广泛和可适应的上下文理解。

  • 作者提出了一种空间选择机制,用于在不同尺度上从大卷积核中选择特征图。通过通道平均池化和通道最大池化,作者有效地提取了特征之间的空间关系,并使用卷积层将池化特征转换为空间注意力图。然后,通过相应的空间选择掩码,对分解的大核卷积特征进行加权并融合,以获得最终的关注特征。

Shift-ConvNets: Small Convolutional Kernel with Large Kernel Effects

方法:论文提出了一种新的操作符,通过正则卷积实现大卷积核效果,从而在广泛的设备范围内实现了CNN的最新进展。论文还提出了一种新的剪枝操作,通过粗粒度剪枝实现了稀疏组卷积。同时,论文还提出了一种基于偏移操作的算子来改进卷积操作,并将其应用于改进的模块结构中。

创新点:

  • 通过使用shift-wise操作,作者实现了使用标准卷积进行大卷积核效果,并通过剪枝得到了稀疏组卷积。这一方法能够将大卷积核的效果与标准CNN的先进性结合起来,拓展了CNN的应用领域。

  • 作者提出了一种新的shift-wise操作方法,通过将输入特征进行分组和位移,模拟多个卷积核尺寸,从而创建多个输出分支。然后,将这些输出分支合并为一个单一的分支。这种方法能够在保持整体网络结构不变的同时,不断优化数据流形的依赖关系。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“大核卷积”获取全部论文+代码

码字不易,欢迎大家点赞评论收藏

这篇关于新一代大核卷积反超ViT和ConvNet!同参数量下性能、精度、速度完胜的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1062451

相关文章

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

黑神话,XSKY 星飞全闪单卷性能突破310万

当下,云计算仍然是企业主要的基础架构,随着关键业务的逐步虚拟化和云化,对于块存储的性能要求也日益提高。企业对于低延迟、高稳定性的存储解决方案的需求日益迫切。为了满足这些日益增长的 IO 密集型应用场景,众多云服务提供商正在不断推陈出新,推出具有更低时延和更高 IOPS 性能的云硬盘产品。 8 月 22 日 2024 DTCC 大会上(第十五届中国数据库技术大会),XSKY星辰天合正式公布了基于星

从状态管理到性能优化:全面解析 Android Compose

文章目录 引言一、Android Compose基本概念1.1 什么是Android Compose?1.2 Compose的优势1.3 如何在项目中使用Compose 二、Compose中的状态管理2.1 状态管理的重要性2.2 Compose中的状态和数据流2.3 使用State和MutableState处理状态2.4 通过ViewModel进行状态管理 三、Compose中的列表和滚动

PR曲线——一个更敏感的性能评估工具

在不均衡数据集的情况下,精确率-召回率(Precision-Recall, PR)曲线是一种非常有用的工具,因为它提供了比传统的ROC曲线更准确的性能评估。以下是PR曲线在不均衡数据情况下的一些作用: 关注少数类:在不均衡数据集中,少数类的样本数量远少于多数类。PR曲线通过关注少数类(通常是正类)的性能来弥补这一点,因为它直接评估模型在识别正类方面的能力。 精确率与召回率的平衡:精确率(Pr