曲线拟合 | 二次B样条拟合曲线

2024-06-14 10:52

本文主要是介绍曲线拟合 | 二次B样条拟合曲线,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

B 样条曲线拟合实例:能平滑化曲线

1. 实例1

为MASS包中mcycle数据集。它测试了一系列模拟的交通车事故中,头部的加速度,以此来评估头盔的性能。times为撞击时间(ms),accel为加速度(g)。首先导入数据,并绘制散点图

(1) 关键函数

# bs() ====
# bs(x, df = NULL, knots = NULL, degree = 3, intercept = FALSE,
#   Boundary.knots = range(x))
#参数解释:
#x:自变量,这里为x
#df: 自由度(回归函数中的参数个数),默认为0,由于我们需要截距,
#  2.2 节中c中提到的公式减去1,因此自由度为4+3 = 7
#knots:节点的位置,这里为c(15,20,32,40)
#degree:q值,默认为3
#其他的参数保持默认即可

然后搭配lm 函数,即可画出样条函数曲线

(2) 代码

# Spline ====
x=mcycle$time
y=mcycle$accel
plot(x, y, type="p", pch=19, cex=0.5)library(splines)
#B = spline(y, n=3*length(y) )
#lines(B$x, B$y, lty=2, col="red")bspl <- lm(y~bs(x, df =7, #knots = c(15,20,32,40), degree=2))
lines(x, fitted(bspl),lwd = 2, col = 2)ref: https://blog.csdn.net/weixin_39642998/article/details/110705947

似乎不靠谱,需要自己指定锚点位置?去掉 knots 参数就好了。
请直接看2(2)

2. help 例子:更靠谱的方法

(1) 原例:不明显

require(stats); require(graphics)
head(women)
bs(women$height, df = 5)
summary(fm1 <- lm(weight ~ bs(height, df = 5), data = women))## example of safe prediction
plot(women, xlab = "Height (in)", ylab = "Weight (lb)")
ht <- seq(57, 73, length.out = 200)
lines(ht, predict(fm1, data.frame(height = ht)))

(2) 重做例1,模仿(1)

library(MASS)
head(mcycle)
x=mcycle$times
y=mcycle$accel#plot(x, y, pch=19, cex=0.5)
library(splines)
bs(y, df = 5)
summary(fm1 <- lm(y ~ bs(x, df = 7, degree = 2), data = NULL))## example of safe prediction
plot(mcycle, xlab = "times", ylab = "accel", pch=19, cex=0.5)
x_2 <- seq(min(x), max(x), length.out = 200)
lines(x_2, predict(fm1, data.frame(x = x_2)), lwd=2, col="red")

目测效果很好!
参数解释:
df=7,有大概7个控制点,越多拟合越好;太多就会过拟合!
degree=3,次数。

在这里插入图片描述

这篇关于曲线拟合 | 二次B样条拟合曲线的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1060199

相关文章

轨迹规划-B样条

B样条究竟是干啥的?白话就是给出一堆点,用样条的方式,给这些点连接起来,并保证丝滑的。 同时B样条分为准均匀和非均匀,以下为准均匀为例。 参考链接1:https://zhuanlan.zhihu.com/p/50626506https://zhuanlan.zhihu.com/p/50626506 参考链接2: https://zhuanlan.zhihu.com/p/536470972h

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据

PR曲线——一个更敏感的性能评估工具

在不均衡数据集的情况下,精确率-召回率(Precision-Recall, PR)曲线是一种非常有用的工具,因为它提供了比传统的ROC曲线更准确的性能评估。以下是PR曲线在不均衡数据情况下的一些作用: 关注少数类:在不均衡数据集中,少数类的样本数量远少于多数类。PR曲线通过关注少数类(通常是正类)的性能来弥补这一点,因为它直接评估模型在识别正类方面的能力。 精确率与召回率的平衡:精确率(Pr

一些数学经验总结——关于将原一元二次函数增加一些限制条件后最优结果的对比(主要针对公平关切相关的建模)

1.没有分段的情况 原函数为一元二次凹函数(开口向下),如下: 因为要使得其存在正解,必须满足,那么。 上述函数的最优结果为:,。 对应的mathematica代码如下: Clear["Global`*"]f0[x_, a_, b_, c_, d_] := (a*x - b)*(d - c*x);(*(b c+a d)/(2 a c)*)Maximize[{f0[x, a, b,

【线性代数】正定矩阵,二次型函数

本文主要介绍正定矩阵,二次型函数,及其相关的解析证明过程和各个过程的可视化几何解释(深蓝色字体)。 非常喜欢清华大学张颢老师说过的一段话:如果你不能用可视化的方式看到事情的结果,那么你就很难对这个事情有认知,认知就是直觉,解析的东西可以让你理解,但未必能让你形成直觉,因为他太反直觉了。 正定矩阵 定义 给定一个大小为 n×n 的实对称矩阵 A ,若对于任意长度为 n 的非零向量 ,有 恒成

Matlab中BaseZoom()函数实现曲线和图片的局部放大

BaseZoom工具下载链接: 链接:https://pan.baidu.com/s/1yItVSinh6vU4ImlbZW6Deg?pwd=9dyl 提取码:9dyl 下载完之后将工具包放置合适的路径下,并在matlab中“设置路径”中添加相应的路径; 注:可以先运行如下图片中的语句,看看是否报错;如果报如下错误,说明matlab未安装“Image Processing Toolbox”工

6. 深度学习中的正则化技术:防止过拟合

引言 过拟合是深度学习模型在训练过程中常遇到的挑战。过拟合会导致模型在训练数据上表现良好,但在新数据上表现不佳。为了防止过拟合,研究者们提出了多种正则化技术,如L1/L2正则化、Dropout、数据增强等。这些技术通过约束模型的复杂度或增加数据的多样性,有效提高了模型的泛化能力。本篇博文将深入探讨这些正则化技术的原理、应用及其在实际深度学习任务中的效果。 1. 过拟合的原因与影响 过拟合通常

async-http-android框架的介绍和二次封装

1。先谈谈框架吧 相信大家一看,就应该想到是一款异步请求的框架了,也就是说他的网络请求是在非UI线程中执行的,而callback在创建他的线程中,应用了Handler的机制。 项目本生的官方网址:http://loopj.com/android-async-http/, 对应的github地址: https://github.com/loopj/android-async-http

基于yolov8的包装盒纸板破损缺陷测系统python源码+onnx模型+评估指标曲线+精美GUI界面

【算法介绍】 基于YOLOv8的包装盒纸板破损缺陷检测系统是一种高效、智能的解决方案,旨在提高生产线上包装盒纸板的质量检测效率与准确性。该系统利用YOLOv8这一前沿的深度学习模型,通过其强大的目标检测能力,能够实时识别并标记出包装盒纸板上的各种破损缺陷,如划痕、撕裂、孔洞等。 在系统中,首先需对包含破损缺陷的包装盒纸板图像进行数据采集和标注,形成训练数据集。随后,利用这些数据进行模型训练,使

基于yolov8的NEU-DET钢材缺陷检测系统python源码+onnx模型+评估指标曲线+精美GUI界面

【算法介绍】 基于YOLOv8的NEU-DET钢材缺陷检测系统是一种创新的解决方案,旨在通过深度学习技术实现对钢材表面缺陷的自动检测和识别。该系统利用YOLOv8算法,该算法以其高效、准确和实时检测的特点著称。 NEU-DET数据集为该系统提供了丰富的训练资源,涵盖了热轧带钢的六种典型表面缺陷,包括轧制氧化皮、斑块、开裂、点蚀表面、内含物和划痕,每种缺陷均有大量样本,确保了模型的全面性和准确性