背包问题----完全背包(最优方案总数分析及实现)

2024-06-14 08:32

本文主要是介绍背包问题----完全背包(最优方案总数分析及实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本人博文背包问题----完全背包(详解|代码实现|背包具体物品的求解)中已详细谈过完全背包问题,同时在博文背包问题---01背包最优方案总数(原理剖析代码实现)中也总结过01背包的最优方案总数的实现。这里我们模仿01背包最优方案总数方法给出完全背包的最优方案求解方法。

   

        重写完全背包的动态规划的状态及状态方程:

        完全背包是在N物品中选取若干件(同一种物品可多次选取)放在空间为V的背包里,每物品的体积为C1,C2,…,Cn,与之相对应的价值为W1,W2,…,Wn.求解怎么装物品可使背包里物品总价值最大。

   

        设物品种类为N,背包容量为V,每种物品的体积为C[i],价值为W[i]。

子问题定义:F[i][j]表示前i物品中选取若干件物品放入剩余空间为j的背包中所能得到的最大价值。

       状态方程为:

                                     (2-2)

 

         在文章背包问题---01背包最优方案总数(原理剖析代码实现)中曾定义G[i][j]代表F[i][j]的方案总数。这里我们也做相同的定义,那么最终的结果应该为G[N][V]。

   

        由01背包转变到完全背包后G[i][j]该怎么求?

        对于01背包来说,G[i][j]求法如下(摘自:背包问题---01背包最优方案总数(原理剖析代码实现)):

        如果F[i][j]=F[i-1][j]且F[i][j]!=F[i-1][j-C[i]]+W[i]说明在状态[i][j]时只有前i-1件物品的放入才会使价值最大,所以第i件物品不放入,那么到状态[i][j]的方案数应该等于[i-1][j]状态的方案数即G[i][j]=G[i-1][j]

        如果F[i][j]=F[i-1][j-C[i]]+W[i] 且F[i][j]!=F[i-1][j]说明在状态[i][j]时只有第i件物品的加入才会使总价值最大,那么方案数应该等于[i-1][j-C[i]]的方案数,即G[i][j]=G[i-1][j-C[i]]

        如果F[i][j]=F[i-1][j-C[i]]+W[i] 且F[i][j]=F[i-1][j]则说明即可以通过状态[i-1][j]在不加入第i件物品情况下到达状态[i][j],又可以通过状态[i-1][j-C[i]]在加入第i件物品的情况下到达状态[i][j],并且这两种情况都使得价值最大且这两种情况是互斥的,所以方案总数为G[i][j]=G[i-1][j-C[i]]+ G[i-1][j]

 

        对于完全背包,我们也可以根据其状态方程来进行条件判断:

        如果F[i][j] = F[i-1][j]且F[i][j] != F[i][j-C[i]]+W[i],说明背包总不存在第i种物品,也就是说背包种物品仍由前i-1种物品组成,那么应该有G[i][j] = G[i-1][j]

        如果F[i][j] = F[i][j-C[i]]+W[i]且F[i][j] != F[i-1][j],则说明背包中必定存在第i种物品使背包达到[i][j]状态的最大值G[i][j] = G[i]

这篇关于背包问题----完全背包(最优方案总数分析及实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1059897

相关文章

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

高效+灵活,万博智云全球发布AWS无代理跨云容灾方案!

摘要 近日,万博智云推出了基于AWS的无代理跨云容灾解决方案,并与拉丁美洲,中东,亚洲的合作伙伴面向全球开展了联合发布。这一方案以AWS应用环境为基础,将HyperBDR平台的高效、灵活和成本效益优势与无代理功能相结合,为全球企业带来实现了更便捷、经济的数据保护。 一、全球联合发布 9月2日,万博智云CEO Michael Wong在线上平台发布AWS无代理跨云容灾解决方案的阐述视频,介绍了

poj2576(二维背包)

题意:n个人分成两组,两组人数只差小于1 , 并且体重只差最小 对于人数要求恰好装满,对于体重要求尽量多,一开始没做出来,看了下解题,按照自己的感觉写,然后a了 状态转移方程:dp[i][j] = max(dp[i][j],dp[i-1][j-c[k]]+c[k]);其中i表示人数,j表示背包容量,k表示输入的体重的 代码如下: #include<iostream>#include<

hdu2159(二维背包)

这是我的第一道二维背包题,没想到自己一下子就A了,但是代码写的比较乱,下面的代码是我有重新修改的 状态转移:dp[i][j] = max(dp[i][j], dp[i-1][j-c[z]]+v[z]); 其中dp[i][j]表示,打了i个怪物,消耗j的耐力值,所得到的最大经验值 代码如下: #include<iostream>#include<algorithm>#include<

csu(背包的变形题)

题目链接 这是一道背包的变形题目。好题呀 题意:给n个怪物,m个人,每个人的魔法消耗和魔法伤害不同,求打死所有怪物所需的魔法 #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>//#include<u>#include<map

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>