数据预处理——调整方差、标准化、归一化(Matlab、python)

2024-06-13 22:12

本文主要是介绍数据预处理——调整方差、标准化、归一化(Matlab、python),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对数据的预处理:

(a)、调整数据的方差

(b)、标准化:将数据标准化为具有零均值和单位方差;(均值方差归一化(Standardization)

(c)、最值归一化也称为离差标准化,是对原始数据的线性变换,使结果值映射到[0 , 1]之间

(a)、调整数据的方差

 均方差=标准差

方差的定义是:离平均值的平方距离的平均。

(b)、标准化

也称为均值归一化(mean normaliztion), 给予原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。经过处理的数据符合标准正态分布,即均值为0,标准差为1。转化函数为:

虽然该方法在无量纲化过程中利用了所有的数据信息,但是该方法在无量纲化后不仅使得转换后的各变量均值相同,且标准差也相同,即无量纲化的同时还消除了各变量在变异程度上的差异,从而转换后的各变量在聚类分析中的重要性程度是同等看待的。


(c)、最值归一化

也称为离差标准化,是对原始数据的线性变换,使结果值映射到[0 , 1]之间。

将一列数据变化到某个固定区间(范围)中,通常,这个区间是[0, 1] 或者(-1,1)之间的小数。主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速。 

注意:由于极值化方法在对变量无量纲化过程中仅仅与该变量的最大值和最小值这两个极端值有关,而与其他取值无关,这使得该方法在改变各变量权重时过分依赖两个极端取值。

所用语言---matlab,python

matlab

%% 调整数据范围   预处理    调整方差到0.02
K=sqrt(0.02/var(inputData));
inputData = inputData*K;
K=sqrt(0.02/var(targetData));
targetData = targetData*K;
%% 标准化
mu = mean(inputData);
sig = std(inputData); %标准差std函数
inputData = (inputData - mu) / sig;
mu = mean(targetData);
sig = std(targetData);
targetData = (targetData - mu) / sig;
% 预处理  归一化
inputData= mapminmax(inputData, 0, 1);
targetData= mapminmax(targetData, 0, 1);

python

import numpy as npinputData=x
targetData=y
K=np.sqrt(0.02/np.var(inputData))
inputData=np.dot(inputData, K)
K=np.sqrt(0.02/np.var(targetData))
targetData=np.dot(targetData, K)

 将数据标准化

import numpy as npinputData=x
targetData=y
input_mean=np.mean(inputData)
input_std=np.std(inputData)
inputData=(inputData-input_mean)/input_std

 最值归一化适用于数据有明显边界的情况,例如考试成绩。该方法是将所有数据映射到[0,1]之间

(x-np.min(x))/(np.max(x)-np.min(x))  # 最值归一化

这篇关于数据预处理——调整方差、标准化、归一化(Matlab、python)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1058567

相关文章

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py