清华大学与智谱AI重磅开源 GLM-4:掀起自然语言处理新革命

本文主要是介绍清华大学与智谱AI重磅开源 GLM-4:掀起自然语言处理新革命,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在强大的预训练基础上,GLM-4-9B 的中英文综合性能相比 ChatGLM3-6B 提升了 40%。尤其是中文对齐能力 AlignBench、指令遵从能力 IFeval,以及工程代码处理能力 Natural Code Bench 方面都实现了显著提升。

自 2023 年 3 月 14 日开源 ChatGLM-6B 以来,GLM 系列模型受到了广泛的关注和认可。特别是在 ChatGLM3-6B 开源之后,开发者对智谱 AI 推出的第四代模型充满了期待。而这一期待,随着 GLM-4-9B 的发布,终于得到了满足。

GLM-4-9B 的诞生

为了赋予小模型(10B 以下)更加强大的能力,GLM 技术团队经过近半年的探索,推出了这一全新的第四代 GLM 系列开源模型:GLM-4-9B。

创新预训练技术

在预训练过程中,我们引入大语言模型进行数据筛选,最终获得了 10T 高质量多语言数据。这一数据量是 ChatGLM3-6B 模型的 3 倍以上。此外,我们采用了 FP8 技术进行高效的预训练,相较于第三代模型,训练效率提高了 3.5 倍。考虑到用户的显存需求,GLM-4-9B 的参数规模从 6B 提升到了 9B。最终,我们将预训练计算量增加了 5 倍,从而在有限的显存条件下最大化性能。

卓越性能展示

综合以上的技术升级,GLM-4-9B 具备了更强大的推理性能、更加优异的上下文处理能力、多语言支持、多模态处理以及全工具 All Tools 调用等优势。

GLM-4-9B 系列包括多个版本:

  • 基础版本:GLM-4-9B(8K)
  • 对话版本:GLM-4-9B-Chat(128K)
  • 超长上下文版本:GLM-4-9B-Chat-1M(1M)
  • 多模态版本:GLM-4V-9B-Chat(8K)

GLM-4-9B 的强大能力

基础能力

在强大的预训练基础上,GLM-4-9B 的中英文综合性能相比 ChatGLM3-6B 提升了 40%。尤其是中文对齐能力 AlignBench、指令遵从能力 IFeval,以及工程代码处理能力 Natural Code Bench 方面都实现了显著提升。即使对比训练量更多的 Llama 3 8B 模型,GLM-4-9B 也丝毫不逊色,在英文表现上略有领先,而在中文学科领域,GLM-4-9B 更是提升了高达 50% [性能评测图表]。

长文本处理能力

图片

图片

GLM-4-9B 模型的上下文长度从 128K 扩展到了 1M tokens,意味着能同时处理多达 200 万字的输入,相当于两本《红楼梦》或 125 篇学术论文的长度。GLM-4-9B-Chat-1M 模型在“大海捞针”实验中,成功展示了其出色的无损处理长文本输入的能力 [长文本实验图示]。

以下是两个展示长文本处理能力的 demo 视频案例:

  1. GLM-4-9B-Chat 模型: 输入 5 个 PDF 文件,总长度约为 128K,给出写一篇关于中国大模型发展的详细调研报告的 prompt。模型能够快速生成高质量的调研报告(视频未加速)。
  2. GLM-4-9B-Chat-1M 模型: 输入《三体》全集约 90 万字,要求模型给该小说写续集大纲的 prompt。模型合理规划并给出续写框架(视频加速 10 倍)。

多语言支持

GLM-4-9B 支持多达 26 种语言,包括汉语、英语、俄语等。我们将 tokenizer 的词表大小从 65K 扩展到 150K,编码效率提高了 30%。在多语言理解和生成任务中,GLM-4-9B-Chat 显著超越 Llama-3-8B-Instruct [多语言性能比较图]。

Function Call 能力

GLM-4-9B 的函数调用能力相较上一代提升了 40%,在 Berkeley Function-Calling Leaderboard 上,其 Function Call 能力与 GPT-4 不相上下 [函数调用性能对比图表]。

All Tools 全工具调用

“All Tools”能力即模型可以理解和使用各种外部工具(如代码执行、联网浏览、画图等)来辅助完成任务。在 1 月 16 日的 Zhipu DevDay 上,GLM-4 模型全线升级了 All Tools 能力,可以智能调用网页浏览器、代码解释器、CogView 等工具,完成复杂请求 [All Tools 任务图示]。

多模态处理

GLM-4V-9B 作为 GLM-4 基座的开源多模态模型,能够处理高分辨率输入,将视觉和文本数据直接混合进行训练,展现了显著的多模态处理效果,与 GPT-4V 性能相当。在识别和处理复杂多模态任务时,表现非常出色 [多模态应用实例图]。

图片

图片

未来展望

GLM-4-9B 展现了其在多种任务中的强大性能,是自然语言处理领域的一大突破。无论是学术研究还是工业应用,GLM-4-9B 都将成为您的不二选择。

我们诚挚邀请您加入 GLM-4 的使用者行列,共同探索这款卓越模型带来的可能性:

  • GitHub 仓库
  • Hugging Face 模型页面
  • 魔搭社区  

这篇关于清华大学与智谱AI重磅开源 GLM-4:掀起自然语言处理新革命的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1057684

相关文章

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Python实现自动化接收与处理手机验证码

《Python实现自动化接收与处理手机验证码》在移动互联网时代,短信验证码已成为身份验证、账号注册等环节的重要安全手段,本文将介绍如何利用Python实现验证码的自动接收,识别与转发,需要的可以参考下... 目录引言一、准备工作1.1 硬件与软件需求1.2 环境配置二、核心功能实现2.1 短信监听与获取2.

Python使用date模块进行日期处理的终极指南

《Python使用date模块进行日期处理的终极指南》在处理与时间相关的数据时,Python的date模块是开发者最趁手的工具之一,本文将用通俗的语言,结合真实案例,带您掌握date模块的六大核心功能... 目录引言一、date模块的核心功能1.1 日期表示1.2 日期计算1.3 日期比较二、六大常用方法详

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件

Java使用多线程处理未知任务数的方案介绍

《Java使用多线程处理未知任务数的方案介绍》这篇文章主要为大家详细介绍了Java如何使用多线程实现处理未知任务数,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 知道任务个数,你可以定义好线程数规则,生成线程数去跑代码说明:1.虚拟线程池:使用 Executors.newVir

一文带你深入了解Python中的GeneratorExit异常处理

《一文带你深入了解Python中的GeneratorExit异常处理》GeneratorExit是Python内置的异常,当生成器或协程被强制关闭时,Python解释器会向其发送这个异常,下面我们来看... 目录GeneratorExit:协程世界的死亡通知书什么是GeneratorExit实际中的问题案例