人工蜂群算法求解TSP问题

2024-06-13 10:08

本文主要是介绍人工蜂群算法求解TSP问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

人工蜂群算法求解TSP问题

【标签】 ABC TSP Matlab

data:2018-10-19 author:怡宝2号

【总起】利用人工蜂群算法(Artificial Bee Colony Algorithm, 简称ABC算法)求解TSP问题,语言:matlab

1. 算法简介

人工蜂群算法(Artificial Bee Colony Algorithm, 简称ABC算法)是一个由蜂群行为启发的算法,在2005年由Karaboga小组为优化代数问题而提出。其主要是为了解决多变量函数优化问题。

2. 算法原理

标准的ABC算法通过模拟实际蜜蜂的采蜜机制将人工蜂群分为3类: 采蜜蜂、观察蜂和侦察蜂。整个蜂群的目标是寻找花蜜量最大的蜜源。在标准的ABC算法中,采蜜蜂利用先前的蜜源信息寻找新的蜜源并与观察蜂分享蜜源信息;观察蜂在蜂房中等待并依据采蜜蜂分享的信息寻找新的蜜源;侦查蜂的任务是寻找一个新的有价值的蜜源,它们在蜂房附近随机地寻找蜜源。所以算法总体分为3个部分。
假设问题的解空间是D维的,采蜜蜂与观察蜂的个数都是S,采蜜蜂的个数或观察蜂的个数与蜜源的数量相等。则标准的ABC算法将优化问题的求解过程看成是在D维搜索空间中进行搜索。每个蜜源的位置代表问题的一个可能解,蜜源的花蜜量对应于相应的解的适应度。一个采蜜蜂与一个蜜源是相对应的。与第i个蜜源相对应的采蜜蜂依据如下公式寻找新的蜜源:
在这里插入图片描述
其中,i=1,2,···,S,表示蜜源、采蜜蜂、观察蜂的个数,D=1,2,···,D,表示优化变量的个数。Φid为[-1,1]之间的随机数,k≠i。
将新生成的可能解{Xi1’,Xi2’,···,XiD’}与原来的解{Xi1,Xi2,···,XiD}做比较,采用贪婪选择策略保留较好的解。
在这里插入图片描述
对每个采蜜蜂按上式对每个采蜜蜂计算一个概率。观察蜂以上面计算的概率接受采蜜蜂,并利用采蜜蜂更新的公式进行更新,再进行贪婪选择。
当所有的采蜜蜂和观察蜂都搜索完整个搜索空间时,如果一个蜜源的适应值在给定的步骤内(定义为控制参数“limit”) 没有被提高, 则丢弃该蜜源,而与该蜜源相对应的采蜜蜂变成侦查蜂,侦查蜂通过已下公式搜索新的可能解。
在这里插入图片描述
[xdmin]: https://img-blog.csdn.net/201810191750084?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3UwMTE2MjIyMDg=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70
其中,r是[0,1]的随机数,xmin和xmax是第d个变量空间的下界和上界。

3. 模型

TSP问题,就是从一个点出发,再回到出发点,要求整个的最短路线。具体数学公式如下:
在这里插入图片描述
在这里插入图片描述

4. 总结

  • 人工蜂群算法主要分:采蜜、观察、侦察三个阶段;
  • 整个原理和遗传算法的原理很类似,采蜜蜂就相当于初始化父代chrom,观察蜂相当于轮盘赌选择之后的子代,侦察蜂就是在limit次中没能找到更优秀的解时,舍弃该解,再随机初始化。

5. 程序和结果

% 人工蜂群算法求解TSP问题
% 参数:
% 输出:
% 
% 有问题详咨询:778961303@qq.com
% (有偿代写程序)close allclc
% 人工蜂群算法求解TSP问题
% 参数:
% 输出:
% 
% 有问题详咨询:778961303@qq.com(有偿代写程序)close all
clc
%% 参数初始化
parameter = initial();%% 画初始路径图
initialDraw(parameter);runtime=10;        %通过修改runtime的值,改变程序的运行次数,用以算法的健壮性
GlobalMins=zeros(1,runtime);
for r=1:runtime%初始化种群
%     for i =1:FoodNumberFoods = initial(runtime,NC);
%     end
%计算适应度函数值for i=1:FoodNumberroute=Foods(i,:);Fitness(i)=calculateFitness1(route);end%% 初始化搜索次数,用于和Limit比较trial=zeros(1,FoodNumber);%找出适应度函数值的最小值BestInd=find(Fitness==min(Fitness));BestInd=BestInd(end);       %避免有两个相同的位置,只取其一GlobalMin=Fitness(BestInd);GlobalParams=Foods(BestInd,:);%迭代开始iter=1;     %初始化迭代次数j=1;        %用以初始化结果while((iter<=maxCycle))%%%%%% 采蜜蜂模式 %%%%%%for i=1:FoodNumber%计算新蜜源的适应度函数值FitnessSol=calculateFitness1(route_next);%使用贪婪准则,寻找最优蜜源if (FitnessSol<Fitness(i)) %若找到更好的蜜源,搜索次数清零Foods(i,:)=route_next;Fitness(i)=FitnessSol;trial(i)=0;elsetrial(i)=trial(i)+1;  %超过设定的Limit次,则该蜂成为侦察蜂end;end;%%%%%% 根据适应度值计算彩蜜蜂被跟随的概率 %%%%%%prob=(0.9.*Fitness./max(Fitness))+0.1;%%%%%% 观察蜂 %%%%%%i=1;      %要跟随的采蜜蜂t=0;      %标记观察蜂while(t<FoodNumber)if (rand<prob(i))   %按概率选择要跟随的采蜜蜂t=t+1;%计算新蜜源的适应度函数值FitnessSol=calculateFitness1(route_next);%使用贪婪准则,寻找最优蜜源if (FitnessSol<Fitness(i))%若找到更好的蜜源,搜索次数清零Foods(i,:)=route_next;Fitness(i)=FitnessSol;trial(i)=0;elsetrial(i)=trial(i)+1;%超过设定的Limit次,则该蜂成为侦察蜂endendi=i+1;                      %要跟随的下一个采蜜蜂if (i==(FoodNumber)+1)i=1;endend% 记录此时更好的解ind=find(Fitness==min(Fitness));ind=ind(end);if (Fitness(ind)<GlobalMin)GlobalMin=Fitness(ind);GlobalParams=Foods(ind,:);end%%%%%% 侦查蜂模式 %%%%%%ind=find(trial==max(trial));ind=ind(end);if (trial(ind)>Limit)   %若搜索次数超过极限值,则进行随机搜索产生新解FitnessSol=calculateFitness1(route_new);Foods(ind,:)=route_new;Fitness(ind)=FitnessSol;end%%%%%% 建立一个次数和最优的矩阵,以便于画图 %%%%%%Cishu(j)=iter;          %迭代次数行向量zuiyou(j)=GlobalMin;    %每次迭代得到的最优解j=j+1;iter=iter+1;end % while(iter<=maxClcle)GlobalMins(r)=GlobalMin;    %程序运行完一次,记录这次的最优路径长度disp(['第',num2str(r),'次运行得到的最优路径是:',num2str(GlobalParams),',此条路径的长度是:',num2str(GlobalMins(r))])
end %end of runs
%%%%%% 画曲线图 %%%%%%
figure(2);
plot(Cishu,zuiyou,'b');
%title('优化曲线');
xlabel('迭代次数');
ylabel('路径长度');
figure(3);%%画出优化路径图
finalDraw(GlobalMin, parameter)

结果:
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

这篇关于人工蜂群算法求解TSP问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1057000

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

如何解决Spring MVC中响应乱码问题

《如何解决SpringMVC中响应乱码问题》:本文主要介绍如何解决SpringMVC中响应乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC最新响应中乱码解决方式以前的解决办法这是比较通用的一种方法总结Spring MVC最新响应中乱码解

pip无法安装osgeo失败的问题解决

《pip无法安装osgeo失败的问题解决》本文主要介绍了pip无法安装osgeo失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 进入官方提供的扩展包下载网站寻找版本适配的whl文件注意:要选择cp(python版本)和你py

解决Java中基于GeoTools的Shapefile读取乱码的问题

《解决Java中基于GeoTools的Shapefile读取乱码的问题》本文主要讨论了在使用Java编程语言进行地理信息数据解析时遇到的Shapefile属性信息乱码问题,以及根据不同的编码设置进行属... 目录前言1、Shapefile属性字段编码的情况:一、Shp文件常见的字符集编码1、System编码

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图