人工蜂群算法求解TSP问题

2024-06-13 10:08

本文主要是介绍人工蜂群算法求解TSP问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

人工蜂群算法求解TSP问题

【标签】 ABC TSP Matlab

data:2018-10-19 author:怡宝2号

【总起】利用人工蜂群算法(Artificial Bee Colony Algorithm, 简称ABC算法)求解TSP问题,语言:matlab

1. 算法简介

人工蜂群算法(Artificial Bee Colony Algorithm, 简称ABC算法)是一个由蜂群行为启发的算法,在2005年由Karaboga小组为优化代数问题而提出。其主要是为了解决多变量函数优化问题。

2. 算法原理

标准的ABC算法通过模拟实际蜜蜂的采蜜机制将人工蜂群分为3类: 采蜜蜂、观察蜂和侦察蜂。整个蜂群的目标是寻找花蜜量最大的蜜源。在标准的ABC算法中,采蜜蜂利用先前的蜜源信息寻找新的蜜源并与观察蜂分享蜜源信息;观察蜂在蜂房中等待并依据采蜜蜂分享的信息寻找新的蜜源;侦查蜂的任务是寻找一个新的有价值的蜜源,它们在蜂房附近随机地寻找蜜源。所以算法总体分为3个部分。
假设问题的解空间是D维的,采蜜蜂与观察蜂的个数都是S,采蜜蜂的个数或观察蜂的个数与蜜源的数量相等。则标准的ABC算法将优化问题的求解过程看成是在D维搜索空间中进行搜索。每个蜜源的位置代表问题的一个可能解,蜜源的花蜜量对应于相应的解的适应度。一个采蜜蜂与一个蜜源是相对应的。与第i个蜜源相对应的采蜜蜂依据如下公式寻找新的蜜源:
在这里插入图片描述
其中,i=1,2,···,S,表示蜜源、采蜜蜂、观察蜂的个数,D=1,2,···,D,表示优化变量的个数。Φid为[-1,1]之间的随机数,k≠i。
将新生成的可能解{Xi1’,Xi2’,···,XiD’}与原来的解{Xi1,Xi2,···,XiD}做比较,采用贪婪选择策略保留较好的解。
在这里插入图片描述
对每个采蜜蜂按上式对每个采蜜蜂计算一个概率。观察蜂以上面计算的概率接受采蜜蜂,并利用采蜜蜂更新的公式进行更新,再进行贪婪选择。
当所有的采蜜蜂和观察蜂都搜索完整个搜索空间时,如果一个蜜源的适应值在给定的步骤内(定义为控制参数“limit”) 没有被提高, 则丢弃该蜜源,而与该蜜源相对应的采蜜蜂变成侦查蜂,侦查蜂通过已下公式搜索新的可能解。
在这里插入图片描述
[xdmin]: https://img-blog.csdn.net/201810191750084?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3UwMTE2MjIyMDg=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70
其中,r是[0,1]的随机数,xmin和xmax是第d个变量空间的下界和上界。

3. 模型

TSP问题,就是从一个点出发,再回到出发点,要求整个的最短路线。具体数学公式如下:
在这里插入图片描述
在这里插入图片描述

4. 总结

  • 人工蜂群算法主要分:采蜜、观察、侦察三个阶段;
  • 整个原理和遗传算法的原理很类似,采蜜蜂就相当于初始化父代chrom,观察蜂相当于轮盘赌选择之后的子代,侦察蜂就是在limit次中没能找到更优秀的解时,舍弃该解,再随机初始化。

5. 程序和结果

% 人工蜂群算法求解TSP问题
% 参数:
% 输出:
% 
% 有问题详咨询:778961303@qq.com
% (有偿代写程序)close allclc
% 人工蜂群算法求解TSP问题
% 参数:
% 输出:
% 
% 有问题详咨询:778961303@qq.com(有偿代写程序)close all
clc
%% 参数初始化
parameter = initial();%% 画初始路径图
initialDraw(parameter);runtime=10;        %通过修改runtime的值,改变程序的运行次数,用以算法的健壮性
GlobalMins=zeros(1,runtime);
for r=1:runtime%初始化种群
%     for i =1:FoodNumberFoods = initial(runtime,NC);
%     end
%计算适应度函数值for i=1:FoodNumberroute=Foods(i,:);Fitness(i)=calculateFitness1(route);end%% 初始化搜索次数,用于和Limit比较trial=zeros(1,FoodNumber);%找出适应度函数值的最小值BestInd=find(Fitness==min(Fitness));BestInd=BestInd(end);       %避免有两个相同的位置,只取其一GlobalMin=Fitness(BestInd);GlobalParams=Foods(BestInd,:);%迭代开始iter=1;     %初始化迭代次数j=1;        %用以初始化结果while((iter<=maxCycle))%%%%%% 采蜜蜂模式 %%%%%%for i=1:FoodNumber%计算新蜜源的适应度函数值FitnessSol=calculateFitness1(route_next);%使用贪婪准则,寻找最优蜜源if (FitnessSol<Fitness(i)) %若找到更好的蜜源,搜索次数清零Foods(i,:)=route_next;Fitness(i)=FitnessSol;trial(i)=0;elsetrial(i)=trial(i)+1;  %超过设定的Limit次,则该蜂成为侦察蜂end;end;%%%%%% 根据适应度值计算彩蜜蜂被跟随的概率 %%%%%%prob=(0.9.*Fitness./max(Fitness))+0.1;%%%%%% 观察蜂 %%%%%%i=1;      %要跟随的采蜜蜂t=0;      %标记观察蜂while(t<FoodNumber)if (rand<prob(i))   %按概率选择要跟随的采蜜蜂t=t+1;%计算新蜜源的适应度函数值FitnessSol=calculateFitness1(route_next);%使用贪婪准则,寻找最优蜜源if (FitnessSol<Fitness(i))%若找到更好的蜜源,搜索次数清零Foods(i,:)=route_next;Fitness(i)=FitnessSol;trial(i)=0;elsetrial(i)=trial(i)+1;%超过设定的Limit次,则该蜂成为侦察蜂endendi=i+1;                      %要跟随的下一个采蜜蜂if (i==(FoodNumber)+1)i=1;endend% 记录此时更好的解ind=find(Fitness==min(Fitness));ind=ind(end);if (Fitness(ind)<GlobalMin)GlobalMin=Fitness(ind);GlobalParams=Foods(ind,:);end%%%%%% 侦查蜂模式 %%%%%%ind=find(trial==max(trial));ind=ind(end);if (trial(ind)>Limit)   %若搜索次数超过极限值,则进行随机搜索产生新解FitnessSol=calculateFitness1(route_new);Foods(ind,:)=route_new;Fitness(ind)=FitnessSol;end%%%%%% 建立一个次数和最优的矩阵,以便于画图 %%%%%%Cishu(j)=iter;          %迭代次数行向量zuiyou(j)=GlobalMin;    %每次迭代得到的最优解j=j+1;iter=iter+1;end % while(iter<=maxClcle)GlobalMins(r)=GlobalMin;    %程序运行完一次,记录这次的最优路径长度disp(['第',num2str(r),'次运行得到的最优路径是:',num2str(GlobalParams),',此条路径的长度是:',num2str(GlobalMins(r))])
end %end of runs
%%%%%% 画曲线图 %%%%%%
figure(2);
plot(Cishu,zuiyou,'b');
%title('优化曲线');
xlabel('迭代次数');
ylabel('路径长度');
figure(3);%%画出优化路径图
finalDraw(GlobalMin, parameter)

结果:
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

这篇关于人工蜂群算法求解TSP问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1057000

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

缓存雪崩问题

缓存雪崩是缓存中大量key失效后当高并发到来时导致大量请求到数据库,瞬间耗尽数据库资源,导致数据库无法使用。 解决方案: 1、使用锁进行控制 2、对同一类型信息的key设置不同的过期时间 3、缓存预热 1. 什么是缓存雪崩 缓存雪崩是指在短时间内,大量缓存数据同时失效,导致所有请求直接涌向数据库,瞬间增加数据库的负载压力,可能导致数据库性能下降甚至崩溃。这种情况往往发生在缓存中大量 k