论文阅读Rolling-Unet,卷积结合MLP的图像分割模型

2024-06-13 07:28

本文主要是介绍论文阅读Rolling-Unet,卷积结合MLP的图像分割模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这篇论文提出了一种新的医学图像分割网络Rolling-Unet,目的是在不用Transformer的前提下,能同时有效提取局部特征和长距离依赖性,从而在性能和计算成本之间找到良好的平衡点。

论文地址:https://ojs.aaai.org/index.php/AAAI/article/view/28173

1,动机(Motivation)

现阶段主流医学图像分割模型大多基于CNN和Transformer,作者认为CNN和Transformer都有缺陷。CNN难以捕捉长距离依赖性,而Transformer计算复杂度高,局部特征学习能力差。

作者认为现有的结合CNN和Transformer的方法尚未能在性能和计算成本之间找到良好的平衡点。

而MLP拥有代替Transformer提取全局特征的潜力。

下面,我们按照惯例从粗到细来拆解这个模型。

2,模型整体结构:

模型整体结构如下,是一个经典的U型编码器-解码器结构,只不过编码器分支最后一个模块,解码器分支第一个模块以及瓶颈层被替换成了全新的Lo2块(Long-Local Block)。

3,Lo2块(Long-Local Block)

Lo2模块的整体结构如下所示

该模块以并行的DOR-MLP(Double Orthogonal Rolling MLP)模块和深度可分离卷积(DSC)模块组成,以同时捕获局部上下文信息和长距离依赖性。两个子模块的特征拼接后,通过Channel-mixing进一步融合,这一步骤有助于不同通道间的特征交互,增强特征表达能力。

补充:Channel-mixing是MLP-Mixer架构中提出的一种技术,用于实现不同通道之间的特征融合。它是一种替代传统卷积操作的手段,特别是在全连接或混合维度特征的场景中。Channel-mixing首先将特征张量在高度和宽度上进行展平,使得每个通道的特征成为一维向量。然后,对每个通道的特征向量应用一个线性变换,通常是一个全连接层,并可能跟随一个非线性激活函数,如GELU。Channel-mixing的作用类似于1x1卷积,它允许网络在不增加太多计算负担的情况下,学习特征的跨通道交互。)

4,DOR-MLP模块

结构如下:

DOR-MLP模块通过并行化两个互补的OR-MLP(Orthogonal Rolling MLP)模块来捕获四个方向(水平、垂直、对角正向和对角负向)的长距离依赖性。

过程具体如下:

1)每个OR-MLP都有两个方向正交的R-MLP模块也就是一个在垂直方向做Rolling操作,一个在水平方向做。从而可以捕获两个长距离依赖。

2)两个并行的OR-MLP中的R-MLP顺序不同,第一个OR-MLP模块先在水平方向上应用R-MLP,然后在垂直方向上应用R-MLP;第二个OR-MLP模块先在垂直方向上应用R-MLP,然后在水平方向上应用R-MLP。这样,每个OR-MLP模块都能捕获两个正交方向上的依赖性,形成对角线方向的感知能力。

3)在每个OR-MLP中还有残差连接,以增强模型的学习能力和避免梯度消失问题。

4)并行处理后,两个OR-MLP模块的输出沿着通道维度进行拼接,以获得不同方向的特征表示。

5)之后,特征会经过LayerNorm和Channel-mixing,Channel-mixing是一种特征融合技术,具体原理和细节我在文章第三段已经介绍了,这里就不讲了。

5,R-MLP模块

1)R-MLP模块对每个通道层的特征图沿相同方向执行Rolling操作。Rolling操作包括以下两个步骤:移位和裁剪。

在移位步骤中,特征图会根据移位步长 k在水平方向上进行移动。移位可以是向左或向右,具体取决于 k的正负值。移位后的每个通道的特征图可能会超出原始特征图的边界。裁剪步骤会去除这些多余的部分,并将缺失的部分补充回到另外一边,确保所有通道的特征图在宽度上对齐。

如果这里没看懂rolling的原理和如何发挥作用的,请移步文章最后一个段落,看看我的解释。

2)接着,在Rolling操作之后,R-MLP在每个空间位置索引 (hi,wj) 上执行带有权重共享的通道投影,以编码长距离依赖性。

通道投影是指在特征矩阵的每个空间位置(即图像的每个像素位置)上,对所有通道的特征进行线性变换,以生成新的特征表示。通道投影的目的是将Rolling操作后的多通道特征进行整合和编码,以捕获长距离依赖性。

在Rolling操作之后,每个空间位置的特征图可能会有不同的宽度或高度特征。通道投影通过在每个空间位置应用一个线性变换(通常是一个全连接层或线性层),将这些特征投影到一个新的特征空间中。这个线性变换可以是参数化的,允许网络在训练过程中学习到最优的投影方式。在R-MLP中,所有空间位置的通道投影共享相同的权重,这意味着无论特征图的大小如何,参数的数量保持不变。这有助于减少模型的参数量并提高计算效率。

3)在通道投影之后,通常会应用一个非线性激活函数(如GELU),以引入非线性特性。

6,我对rolling的理解

首先,我们要明确,这个模型并没有用自注意力或者协方差这类的矩阵乘法,而是用的取一个坐标的所有channel维特征做线性变换。

那么,如果不用rolling,它就不能计算到特征图上每个点跟其他所有点的相关性。而最多只能计算到处在水平或垂直线上的点之间的相关性。

理解的关键还是下面这个图,不同颜色深浅其实代表的是原始的位置。

rolling之后,我们取一个坐标点(h,w)的所有channel,其实取的已经不完全是原始的(h,w)对应的值了。我们可以看到颜色已经混了。这代表同一索引在不同channel已经混合了其他位置坐标的值。因此,通过线性变换,可以计算出不同坐标像素之间的相关性。

这篇关于论文阅读Rolling-Unet,卷积结合MLP的图像分割模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1056655

相关文章

Spring Boot项目中结合MyBatis实现MySQL的自动主从切换功能

《SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能》:本文主要介绍SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能,本文分步骤给大家介绍的... 目录原理解析1. mysql主从复制(Master-Slave Replication)2. 读写分离3.

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

C++字符串提取和分割的多种方法

《C++字符串提取和分割的多种方法》在C++编程中,字符串处理是一个常见的任务,尤其是在需要从字符串中提取特定数据时,本文将详细探讨如何使用C++标准库中的工具来提取和分割字符串,并分析不同方法的适用... 目录1. 字符串提取的基本方法1.1 使用 std::istringstream 和 >> 操作符示

Python结合Flask框架构建一个简易的远程控制系统

《Python结合Flask框架构建一个简易的远程控制系统》这篇文章主要为大家详细介绍了如何使用Python与Flask框架构建一个简易的远程控制系统,能够远程执行操作命令(如关机、重启、锁屏等),还... 目录1.概述2.功能使用系统命令执行实时屏幕监控3. BUG修复过程1. Authorization

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应