计算机视觉全系列实战教程:(八)图像变换-点运算、灰度变换、直方图变换

本文主要是介绍计算机视觉全系列实战教程:(八)图像变换-点运算、灰度变换、直方图变换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图像变换:点运算、灰度变换、直方图变换

  • 1.点运算
    • (1)What
    • (2)Why
  • 2.灰度变换
    • (1)What
    • (2)Why(作用)
    • (3)Which(有哪些灰度变换)
  • 3.直方图修正
    • (1)直方图均衡化

1.点运算

(1)What

通过点运算,输出图像的每个像素的灰度值仅仅取决于输入图像中相对应像素的灰度值。

(2)Why

点运算的作用:实现图像增强的常用方法之一

2.灰度变换

(1)What

灰度变换是一种点运算的具体形式,换句话说,灰度变换是点运算的一种运用

(2)Why(作用)

增强对比度,是增强图像的重要手段(途径)和方法

  • 改善图像的质量:显示更多细节,进行对比度拉伸
  • 突出感兴趣的特征:针对图像中感兴趣的区域进行突出或抑制

(3)Which(有哪些灰度变换)

核心:灰度变换函数的不同

  • A.线性灰度变换
    y = k * f(x) + b
    当k>1:对比度将增大
    当k<1:对比度将减小
    当k=1,b!=0:图像整体变亮或变暗
    当k=-1,b=255:图像灰度正好相反
    当k<0,b>0:暗区域变亮,亮区域变暗
  • B.分段线性灰度变换

在这里插入图片描述
确定分段函数的三个k值和b值即可实现分段灰度变换效果。
分段线性灰度变换的效果对参数的选取依赖很高,当参数选取不好的时候,不但无法实现增强图像的效果,还可能变得更加糟糕。为此实现自适应选取成为分段线性灰度变换的关键。目前常用的方法有:自适应最小误差法多尺度逼近方法
恒增强率方法等。

  • C.非线性变换-对数变换
    g(x) = c * log(1+f(x))
  • D.非线性变换-反对数变换
    g(x) = ( (f(x)+1)^r -1 ) / f(x)
  • E.非线性变换-幂律变换
    g(x) = c*f(x)^alpha

3.直方图修正

(1)直方图均衡化

直方图均衡化可实现图像的自动增强,但效果不易控制,得到的是全局增强的结果
  • step01:统计每一个灰度级的数量
// 统计输入图像的灰度级数量
std::vector<int> vNk(256, 0);
int iTotal = imDst.total();
for (int i = 0; i < imDst.total(); ++i)
{vNk[imDst.data[i]]++;
}
  • step02:求累积分布
// 求累积分布函数
for (int i = 1; i < 256; ++i)
{vNk[i] = vNk[i] + vNk[i - 1];
}
  • step03:建立映射关系
// 确定映射关系
std::vector<double> vMPk(256, 0.0);
for (int i = 0; i < 256; ++i)
{vMPk[i] = 255.0f * (double)vNk[i] / iTotal;
}
// 重新赋值实现均衡化
for (int i = 0; i < iTotal; ++i)
{imDst.data[i] = vMPk[imDst.data[i]];
}

代码汇总如下(可直接使用):

/* 图像均衡化 */
int ImgEqualize(const cv::Mat& imSrc, cv::Mat& imDst) {// 对输入的数据进行可靠性判定if (imSrc.empty()) return -1;// 对输入图像进行灰度化处理if (imSrc.channels() == 3)cv::cvtColor(imSrc, imDst, cv::COLOR_RGB2GRAY);else imDst = imSrc;// 统计输入图像的灰度级数量std::vector<int> vNk(256, 0);int iTotal = imDst.total();for (int i = 0; i < imDst.total(); ++i){vNk[imDst.data[i]]++;}// 求累积分布函数for (int i = 1; i < 256; ++i){vNk[i] = vNk[i] + vNk[i - 1];}// 确定映射关系std::vector<double> vMPk(256, 0.0);for (int i = 0; i < 256; ++i){vMPk[i] = 255.0f * (double)vNk[i] / iTotal;}// 重新赋值实现均衡化for (int i = 0; i < iTotal; ++i){imDst.data[i] = vMPk[imDst.data[i]];}}

这篇关于计算机视觉全系列实战教程:(八)图像变换-点运算、灰度变换、直方图变换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1056576

相关文章

Ubuntu固定虚拟机ip地址的方法教程

《Ubuntu固定虚拟机ip地址的方法教程》本文详细介绍了如何在Ubuntu虚拟机中固定IP地址,包括检查和编辑`/etc/apt/sources.list`文件、更新网络配置文件以及使用Networ... 1、由于虚拟机网络是桥接,所以ip地址会不停地变化,接下来我们就讲述ip如何固定 2、如果apt安

PyCharm 接入 DeepSeek最新完整教程

《PyCharm接入DeepSeek最新完整教程》文章介绍了DeepSeek-V3模型的性能提升以及如何在PyCharm中接入和使用DeepSeek进行代码开发,本文通过图文并茂的形式给大家介绍的... 目录DeepSeek-V3效果演示创建API Key在PyCharm中下载Continue插件配置Con

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

Spring Boot整合log4j2日志配置的详细教程

《SpringBoot整合log4j2日志配置的详细教程》:本文主要介绍SpringBoot项目中整合Log4j2日志框架的步骤和配置,包括常用日志框架的比较、配置参数介绍、Log4j2配置详解... 目录前言一、常用日志框架二、配置参数介绍1. 日志级别2. 输出形式3. 日志格式3.1 PatternL

MySQL8.2.0安装教程分享

《MySQL8.2.0安装教程分享》这篇文章详细介绍了如何在Windows系统上安装MySQL数据库软件,包括下载、安装、配置和设置环境变量的步骤... 目录mysql的安装图文1.python访问网址2javascript.点击3.进入Downloads向下滑动4.选择Community Server5.

在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程

《在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程》本文介绍了在Java中使用ModelMapper库简化Shapefile属性转JavaBean的过程,对比... 目录前言一、原始的处理办法1、使用Set方法来转换2、使用构造方法转换二、基于ModelMapper

CentOS系统Maven安装教程分享

《CentOS系统Maven安装教程分享》本文介绍了如何在CentOS系统中安装Maven,并提供了一个简单的实际应用案例,安装Maven需要先安装Java和设置环境变量,Maven可以自动管理项目的... 目录准备工作下载并安装Maven常见问题及解决方法实际应用案例总结Maven是一个流行的项目管理工具

Java实战之自助进行多张图片合成拼接

《Java实战之自助进行多张图片合成拼接》在当今数字化时代,图像处理技术在各个领域都发挥着至关重要的作用,本文为大家详细介绍了如何使用Java实现多张图片合成拼接,需要的可以了解下... 目录前言一、图片合成需求描述二、图片合成设计与实现1、编程语言2、基础数据准备3、图片合成流程4、图片合成实现三、总结前

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee