Qwen2 阿里最强开源大模型(Qwen2-7B)本地部署、API调用和WebUI对话机器人

本文主要是介绍Qwen2 阿里最强开源大模型(Qwen2-7B)本地部署、API调用和WebUI对话机器人,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

阿里巴巴通义千问团队发布了Qwen2系列开源模型,该系列模型包括5个尺寸的预训练和指令微调模型:Qwen2-0.5BQwen2-1.5BQwen2-7BQwen2-57B-A14B以及Qwen2-72B。对比当前最优的开源模型,Qwen2-72B在包括自然语言理解、知识、代码、数学及多语言等多项能力上均显著超越当前领先的Llama3-70B等大模型。

Qwen2-72B模型评测

老牛同学今天部署和体验Qwen2-7B-Instruct指令微调的中等尺寸模型,相比近期推出同等规模的开源最好的Llama3-8BGLM4-9B等模型,Qwen2-7B-Instruct依然能在多个评测上取得显著的优势,尤其是代码及中文理解上。

Qwen2-7B模型

特别注意: 虽然Qwen2开源了,但仍然需要遵循其模型许可,除Qwen2-72B依旧使用此前的Qianwen License外,其余系列版本模型,包括Qwen2-0.5BQwen2-1.5BQwen2-7B以及Qwen2-57B-A14B等在内,均采用Apache 2.0许可协议。

下载Qwen2-7B-instruct模型文件

为了简化模型的部署过程,我们直接下载GGUF文件。关于GGUF文件介绍,请详见部署Llama3-8B大模型的文章:玩转AI,笔记本电脑安装属于自己的Llama 3 8B大模型和对话客户端

打开Qwen2-7B-Instruct-GGUF模型文件列表(https://modelscope.cn/models/qwen/Qwen2-7B-Instruct-GGUF/files),我们选择qwen2-7b-instruct-q5_k_m.gguf并下载:

Qwen2-7B量化模型文件

我们可以根据自己需要,选择下载其它版本的模型文件!

启动Qwen2-7B-Instruct大模型

GGUF模型量化文件下载完成后,我们就可以来运行Qwen2-7B大模型了。

在启动Qwen2-7B大模型之前,我们首先需要安装Python依赖包列表:

pip install llama-cpp-python
pip install openai
pip install uvicorn
pip install starlette
pip install fastapi
pip install sse_starlette
pip install starlette_context
pip install pydantic_settings

然后打开一个Terminal终端窗口,切换到GGUF模型文件目录,启动Qwen2-7B大模型(./qwen2-7b-instruct-q5_k_m.gguf即为上一步下载的模型文件路径):

# 启动Qwen2大模型# n_ctx=20480代表单次回话最大20480个Token数量
python -m llama_cpp.server \--host 0.0.0.0 \--model ./qwen2-7b-instruct-q5_k_m.gguf \--n_ctx 20480

Qwen2-7B启动成功

Qwen2-7B-instruct 命令行对话客户端

CLI命令行的客户端,可以参考之前LLama3-8B大模型的文章:https://mp.weixin.qq.com/s/MekCUJDhKzuUnoykkGoH2g

# client.pyfrom openai import OpenAI# 注意服务端端口,因为是本地,所以不需要api_key
client = OpenAI(base_url="http://127.0.0.1:8000/v1",api_key="not-needed")# 对话历史:设定系统角色是一个只能助理,同时提交“自我介绍”问题
history = [{"role": "system", "content": "你是一个智能助理,你的回答总是容易理解的、正确的、有用的和内容非常精简."},
]# 首次自我介绍完毕,接下来是等代码我们的提示
while True:completion = client.chat.completions.create(model="local-model",messages=history,temperature=0.7,stream=True,)new_message = {"role": "assistant", "content": ""}for chunk in completion:if chunk.choices[0].delta.content:print(chunk.choices[0].delta.content, end="", flush=True)new_message["content"] += chunk.choices[0].delta.contenthistory.append(new_message)print("\033[91;1m")user_input = input("> ")if user_input.lower() in ["bye", "quit", "exit"]:  # 我们输入bye/quit/exit等均退出客户端print("\033[0mBYE BYE!")breakhistory.append({"role": "user", "content": user_input})print("\033[92;1m")

启动CLI对话客户端:python client.py

Qwen2-7B启动成功

至此,我们可以与Qwen2-7B-Instruct进行对话,体验Qwen2大模型的魅力了。

如果我们主要是通过API的方式使用Qwen2大模型,那么Qwen2部署就到此结束了。

接下来的章节,我们部署WebUI对话客户端,通过Web界面的方式使用Qwen2大模型,并且可以分享出去~

Qwen2-7B-Instruct WebUI客户端

结合Ollama工具,搭建WebUI客户端,可参考之前Llama3-8B大模型的文章:一文彻底整明白,基于Ollama工具的LLM大语言模型Web可视化对话机器人部署指南

第一步: 我们需要下载安装Ollama本地大模型管理工具:

Ollama提供了MacOSLinuxWindows操作系统的安装包,大家可根据自己的操作系统,下载安装即可:

Ollama下载

安装包下载之后的安装过程,和日常安装其他软件没有差别,包括点击Next以及Install等安装ollama到命令行。安装后续步骤中,我们可无需安装任何模型,因为我们在上文中我们已经安装了Qwen2-7B大模型,后面可以直接使用。

第二步: 安装Node.js编程语言工具包

安装Node.js编程语言工具包和安装其他软件包一样,下载安装即可:https://nodejs.org

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

安装完成之后,可以验证一下 Node.js 的版本,建议用目前的最新v20版本:

node -v

老牛同学安装的版本:v20.13.1(最新版本)

第三步: 基于GGUF模型文件创建Ollama模型

在我们存放Qwen2-7B的 GGUF 模型文件目录中,创建一个文件名为Modelfile的文件,该文件的内容如下:

FROM ./qwen2-7b-instruct-q5_k_m.gguf

然后在Terminal终端,使用这个文件创建Ollama模型,这里我把Ollama的模型取名为Qwen2-7B

$ ollama create Qwen2-7B -f ./Modelfile
transferring model data 
using existing layer sha256:258dd2fa1bdf98b85327774e1fd36e2268c2a4b68eb9021d71106449ee4ba9d5 
creating new layer sha256:14f4474ef69698bf4dbbc7409828341fbd85923319a801035e651d9fe6a9e9c9 
writing manifest 
success

最后,通过Ollama启动我们刚创建的大语言模型:

ollama run Qwen2-7B

启动完毕,其实我们已经有了一个和之前差不多的控制台对话界面,也可以与Qwen2-7B对话了。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

如果我们不想要这个模型了,也可以通过命令行删除模型文件:ollama rm Qwen2-7B

我们也可以查看本地Ollama管理的模型列表:ollama list

Ollama存放模型文件根目录:~/.ollama

第四步: 部署Ollama大模型Web对话界面

控制台聊天对话界面体验总归是不太好,接下来部署 Web 可视化聊天界面。

首先,下载ollama-webuiWeb 工程代码:git clone https://github.com/ollama-webui/ollama-webui-lite

然后切换ollama-webui代码的目录:cd ollama-webui-lite

设置 Node.js 工具包镜像源,以接下来下载 Node.js 的依赖包更加快速:npm config set registry http://mirrors.cloud.tencent.com/npm/

安装 Node.js 依赖的工具包:npm install

最后,启动 Web 可视化界面:npm run dev

WebUI启动成功

如果看到以上输出,代表 Web 可视化界面已经成功了!

第五步: 通过WebUI愉快与Qwen2-7B对话

浏览器打开 Web 可视化界面:http://localhost:3000/

可以看到Ollama的初始化页面,默认没有模型,需要选择,我们选择刚创建并部署的Qwen2-7B模型:

选择Qwen2-7B大模型

底部就是聊天输入框,至此可以愉快的与Qwen2-7B聊天对话了:

总结:Qwen2-7B比Llama3-8B快

老牛同学验证和对比,在文本推理上,Qwen2-7B确实比Llama3-8B要快很多。后续老牛同学中文文本推理相关的API接口,就主要采用更快Qwen2-7B大模型了~

其他:Ollama工具常用用法

从上文的介绍可以看到,基于Ollama部署一个大模型的 Web 可视化对话机器人,还是非常方便。下面整理了部分Ollama提供的用法或者。

Ollama 命令工具

# 查看当前Ollama的模型
ollama list# 增量更新当前部署的模型
ollama pull Qwen2-7B# 删除一个模型文件
ollama rm Qwen2-7B# 复制一个模型
ollama cp Qwen2-7B Qwen2-newModel

Ollama API结果返回

curl http://localhost:11434/api/generate -d '{"model": "Qwen2-7B","prompt":"为什么天空是蓝色的?"
}'

Ollama API聊天对话

curl http://localhost:11434/api/chat -d '{"model": "Qwen2-7B","messages": [{ "role": "user", "content": "为什么天空是蓝色的?" }]
}'

关注本公众号,我们共同学习进步👇🏻👇🏻👇🏻

微信公众号:老牛同学

微信公众号:老牛同学

Qwen2-7B 开源大模型

Qwen2 阿里最强开源大模型(Qwen2-7B)本地部署、API调用和WebUI对话机器人

Llama3-8B 开源大模型

玩转 AI,笔记本电脑安装属于自己的 Llama 3 8B 大模型和对话客户端

一文彻底整明白,基于 Ollama 工具的 LLM 大语言模型 Web 可视化对话机器人部署指南

基于Llama 3搭建中文版(Llama3-Chinese-Chat)大模型对话聊天机器人

GLM-4-9B 开源大模型

本地部署GLM-4-9B清华智谱开源大模型方法和对话效果体验

ChatTTS 文本转语音模型

ChatTTS 开源文本转语音模型本地部署、API使用和搭建WebUI界面

大模型应用

借助AI大模型,三分钟原创一部儿童故事短视频(附完整操作步骤)

高效编写大模型 Prompt 提示词,解锁 AI 无限创意潜能

Python 小游戏

AI已来,我与AI一起用Python编写了一个消消乐小游戏

Python游戏编程:一步步用Python打造经典贪吃蛇小游戏


这篇关于Qwen2 阿里最强开源大模型(Qwen2-7B)本地部署、API调用和WebUI对话机器人的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1055614

相关文章

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

在java中如何将inputStream对象转换为File对象(不生成本地文件)

《在java中如何将inputStream对象转换为File对象(不生成本地文件)》:本文主要介绍在java中如何将inputStream对象转换为File对象(不生成本地文件),具有很好的参考价... 目录需求说明问题解决总结需求说明在后端中通过POI生成Excel文件流,将输出流(outputStre

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

SpringBoot配置Ollama实现本地部署DeepSeek

《SpringBoot配置Ollama实现本地部署DeepSeek》本文主要介绍了在本地环境中使用Ollama配置DeepSeek模型,并在IntelliJIDEA中创建一个Sprin... 目录前言详细步骤一、本地配置DeepSeek二、SpringBoot项目调用本地DeepSeek前言随着人工智能技

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

通过Docker Compose部署MySQL的详细教程

《通过DockerCompose部署MySQL的详细教程》DockerCompose作为Docker官方的容器编排工具,为MySQL数据库部署带来了显著优势,下面小编就来为大家详细介绍一... 目录一、docker Compose 部署 mysql 的优势二、环境准备与基础配置2.1 项目目录结构2.2 基

CentOS 7部署主域名服务器 DNS的方法

《CentOS7部署主域名服务器DNS的方法》文章详细介绍了在CentOS7上部署主域名服务器DNS的步骤,包括安装BIND服务、配置DNS服务、添加域名区域、创建区域文件、配置反向解析、检查配置... 目录1. 安装 BIND 服务和工具2.  配置 BIND 服务3 . 添加你的域名区域配置4.创建区域

SpringCloud之LoadBalancer负载均衡服务调用过程

《SpringCloud之LoadBalancer负载均衡服务调用过程》:本文主要介绍SpringCloud之LoadBalancer负载均衡服务调用过程,具有很好的参考价值,希望对大家有所帮助,... 目录前言一、LoadBalancer是什么?二、使用步骤1、启动consul2、客户端加入依赖3、以服务

Vue 调用摄像头扫描条码功能实现代码

《Vue调用摄像头扫描条码功能实现代码》本文介绍了如何使用Vue.js和jsQR库来实现调用摄像头并扫描条码的功能,通过安装依赖、获取摄像头视频流、解析条码等步骤,实现了从开始扫描到停止扫描的完整流... 目录实现步骤:代码实现1. 安装依赖2. vue 页面代码功能说明注意事项以下是一个基于 Vue.js