深度学习基础2(反向传播算法)

2024-06-12 15:18

本文主要是介绍深度学习基础2(反向传播算法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

反向传播算法


我们先是用链式法则解释。比如如下的神经网络
  • 前向传播
对于节点 h_1来说, h_1的净输入 net_{h_1}如下:
net_{h_1}=w_1\times i_1+w_2\times i_2+b_1\times 1
接着对 net_{h_1}做一个sigmoid函数得到节点 h_1的输出:
out_{h_1}=\frac{1}{1+e^{-net_{h_1}}}
类似的,我们能得到节点 h_2o_1o_2的输出 out_{h_2}out_{o_1}out_{o_2}

  • 误差
得到结果后,整个神经网络的输出误差可以表示为:
E_{total}=\sum\frac{1}{2}(target-output)^2
其中 output就是刚刚通过前向传播算出来的 out_{o_1}out_{o_2}target是节点 o_1o_2的目标值。 E_{total}用来衡量二者的误差。
这个 E_{total}也可以认为是cost function,不过这里省略了防止overfit的regularization term( \sum{w_i^2}
展开得到
E_{total}=E{o_1}+E{o_2}=\frac{1}{2}(target_{o_1}-out_{o_1})^2+\frac{1}{2}(target_{o_2}-out_{o_2})^2

  • 后向传播
对输出层的 w_5
通过梯度下降调整 w_5,需要求 \frac{\partial {E_{total}}}{\partial {w_5}},由链式法则:
\frac{\partial {E_{total}}}{\partial {w_5}}=\frac{\partial {E_{total}}}{\partial {out_{o_1}}}\frac{\partial {out_{o_1}}}{\partial {net_{o_1}}}\frac{\partial {net_{o_1}}}{\partial {w_5}}
如下图所示:
<img src="https://pic4.zhimg.com/50/f2d8768af0d9264687905a0134dae927_hd.png" data-rawwidth="525" data-rawheight="257" class="origin_image zh-lightbox-thumb" width="525" data-original="https://pic4.zhimg.com/f2d8768af0d9264687905a0134dae927_r.png"> \frac{\partial {E_{total}}}{\partial {out_{o_1}}}=\frac{\partial}{\partial {out_{o_1}}}(\frac{1}{2}(target_{o_1}-out_{o_1})^2+\frac{1}{2}(target_{o_2}-out_{o_2})^2)=-(target_{o_1}-out_{o_1})
\frac{\partial {out_{o_1}}}{\partial {net_{o_1}}}=\frac{\partial }{\partial {net_{o_1}}}\frac{1}{1+e^{-net_{o_1}}}=out_{o_1}(1-out_{o_1})
\frac{\partial {net_{o_1}}}{\partial {w_5}}=\frac{\partial}{\partial {w_5}}(w_5\times out_{h_1}+w_6\times out_{h_2}+b_2\times 1)=out_{h_1}
以上3个相乘得到梯度 \frac{\partial {E_{total}}}{\partial {w_5}},之后就可以用这个梯度训练了:
w_5^+=w_5-\eta \frac{\partial {E_{total}}}{\partial {w_5}}
很多教材比如Stanford的课程,会把中间结果 \frac{\partial {E_{total}}}{\partial {net_{o_1}}}=\frac{\partial {E_{total}}}{\partial {out_{o_1}}}\frac{\partial {out_{o_1}}}{\partial {net_{o_1}}}记做 \delta_{o_1},表示这个节点对最终的误差需要负多少责任。。所以有 \frac{\partial {E_{total}}}{\partial {w_5}}=\delta_{o_1}out_{h_1}



对隐藏层的  w_1
通过梯度下降调整 w_1,需要求 \frac{\partial {E_{total}}}{\partial {w_1}},由链式法则:
\frac{\partial {E_{total}}}{\partial {w_1}}=\frac{\partial {E_{total}}}{\partial {out_{h_1}}}\frac{\partial {out_{h_1}}}{\partial {net_{h_1}}}\frac{\partial {net_{h_1}}}{\partial {w_1}}
如下图所示:
<img src="https://pic3.zhimg.com/50/d50d1d812f0f036b8c5cb389e463b01a_hd.png" data-rawwidth="612" data-rawheight="494" class="origin_image zh-lightbox-thumb" width="612" data-original="https://pic3.zhimg.com/d50d1d812f0f036b8c5cb389e463b01a_r.png">参数 参数 w_1影响了 net_{h_1},进而影响了 out_{h_1},之后又影响到 E_{o_1}E_{o_2}
求解每个部分:
\frac{\partial {E_{total}}}{\partial {out_{h_1}}}=\frac{\partial {E_{o_1}}}{\partial {out_{h_1}}}+\frac{\partial {E_{o_2}}}{\partial {out_{h_1}}}
其中 \frac{\partial {E_{o_1}}}{\partial {out_{h_1}}}=\frac{\partial {E_{o_1}}}{\partial {net_{o_1}}}\times \frac{\partial {net_{o_1}}}{\partial {out_{h_1}}}=\delta_{o_1}\times \frac{\partial {net_{o_1}}}{\partial {out_{h_1}}}=\delta_{o_1}\times \frac{\partial}{\partial {out_{h_1}}}(w_5\times out_{h_1}+w_6\times out_{h_2}+b_2\times 1)=\delta_{o_1}w_5,这里 \delta_{o_1}之前计算过。
\frac{\partial {E_{o_2}}}{\partial {out_{h_1}}}的计算也类似,所以得到
\frac{\partial {E_{total}}}{\partial {out_{h_1}}}=\delta_{o_1}w_5+\delta_{o_2}w_7
\frac{\partial {E_{total}}}{\partial {w_1}}的链式中其他两项如下:
\frac{\partial {out_{h_1}}}{\partial {net_{h_1}}}=out_{h_1}(1-out_{h_1})
\frac{\partial {net_{h_1}}}{\partial {w_1}}=\frac{\partial }{\partial {w_1}}(w_1\times i_1+w_2\times i_2+b_1\times 1)=i_1
相乘得到
\frac{\partial {E_{total}}}{\partial {w_1}}=\frac{\partial {E_{total}}}{\partial {out_{h_1}}}\frac{\partial {out_{h_1}}}{\partial {net_{h_1}}}\frac{\partial {net_{h_1}}}{\partial {w_1}}=(\delta_{o_1}w_5+\delta_{o_2}w_7)\times out_{h_1}(1-out_{h_1}) \times i_1
得到梯度后,就可以对 w_1迭代了:
w_1^+=w_1-\eta \frac{\partial{E_{total}}}{\partial{w_1}}
在前一个式子里同样可以对 \delta_{h_1}进行定义, \delta_{h_1}=\frac{\partial {E_{total}}}{\partial {out_{h_1}}}\frac{\partial {out_{h_1}}}{\partial {net_{h_1}}}=(\delta_{o_1}w_5+\delta_{o_2}w_7)\times out_{h_1}(1-out_{h_1}) =(\sum_o \delta_ow_{ho})\times out_{h_1}(1-out_{h_1}) ,所以整个梯度可以写成 \frac{\partial {E_{total}}}{\partial {w_1}}=\delta_{h_1}\times i_1

=======================
上述 \delta就是教程 Unsupervised Feature Learning and Deep Learning Tutorial 中第三步计算的由来。。
<img src="https://pic3.zhimg.com/50/2d29c11b1c9da7652c63f01d5e31284e_hd.jpg" data-rawwidth="822" data-rawheight="428" class="origin_image zh-lightbox-thumb" width="822" data-original="https://pic3.zhimg.com/2d29c11b1c9da7652c63f01d5e31284e_r.jpg">

所谓的后向传播,其实就是『将来在宣传传播上出了偏差,你们要负责的!』,每一个节点负责的量用\delta表示,那么,隐藏节点需要负责的量,就由输出节点负责的量一层层往前传导。

参考:
【1】 A Step by Step Backpropagation Example
【2】 Unsupervised Feature Learning and Deep Learning Tutorial


假设我们有一个固定样本集 \textstyle \{ (x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)}) \},它包含 \textstyle m 个样例。我们可以用批量梯度下降法来求解神经网络。具体来讲,对于单个样例 \textstyle (x,y),其代价函数为:

\begin{align}J(W,b; x,y) = \frac{1}{2} \left\| h_{W,b}(x) - y \right\|^2.\end{align}

这是一个(二分之一的)方差代价函数。给定一个包含 \textstyle m 个样例的数据集,我们可以定义整体代价函数为:

 \begin{align}J(W,b)&= \left[ \frac{1}{m} \sum_{i=1}^m J(W,b;x^{(i)},y^{(i)}) \right]                       + \frac{\lambda}{2} \sum_{l=1}^{n_l-1} \; \sum_{i=1}^{s_l} \; \sum_{j=1}^{s_{l+1}} \left( W^{(l)}_{ji} \right)^2 \\&= \left[ \frac{1}{m} \sum_{i=1}^m \left( \frac{1}{2} \left\| h_{W,b}(x^{(i)}) - y^{(i)} \right\|^2 \right) \right]                       + \frac{\lambda}{2} \sum_{l=1}^{n_l-1} \; \sum_{i=1}^{s_l} \; \sum_{j=1}^{s_{l+1}} \left( W^{(l)}_{ji} \right)^2\end{align}

以上公式中的第一项 \textstyle J(W,b) 是一个均方差项。第二项是一个规则化项(也叫权重衰减项,其目的是减小权重的幅度,防止过度拟合。


[注:通常权重衰减的计算并不使用偏置项 \textstyle b^{(l)}_i,比如我们在 \textstyle J(W, b) 的定义中就没有使用。一般来说,将偏置项包含在权重衰减项中只会对最终的神经网络产生很小的影响。如果你在斯坦福选修过CS229(机器学习)课程,或者在YouTube上看过课程视频,你会发现这个权重衰减实际上是课上提到的贝叶斯规则化方法的变种。在贝叶斯规则化方法中,我们将高斯先验概率引入到参数中计算MAP(极大后验)估计(而不是极大似然估计)。]


权重衰减参数 \textstyle \lambda 用于控制公式中两项的相对重要性。在此重申一下这两个复杂函数的含义:\textstyle J(W,b;x,y) 是针对单个样例计算得到的方差代价函数;\textstyle J(W,b) 是整体样本代价函数,它包含权重衰减项。


以上的代价函数经常被用于分类和回归问题。在分类问题中,我们用 \textstyle y = 0 或 \textstyle 1,来代表两种类型的标签(回想一下,这是因为 sigmoid激活函数的值域为 \textstyle [0,1];如果我们使用双曲正切型激活函数,那么应该选用 \textstyle -1 和 \textstyle +1 作为标签)。对于回归问题,我们首先要变换输出值域(译者注:也就是 \textstyle y),以保证其范围为 \textstyle [0,1] (同样地,如果我们使用双曲正切型激活函数,要使输出值域为 \textstyle [-1,1])。


我们的目标是针对参数 \textstyle W 和 \textstyle b 来求其函数 \textstyle J(W,b) 的最小值。为了求解神经网络,我们需要将每一个参数 \textstyle W^{(l)}_{ij} 和 \textstyle b^{(l)}_i 初始化为一个很小的、接近零的随机值(比如说,使用正态分布 \textstyle {Normal}(0,\epsilon^2) 生成的随机值,其中 \textstyle \epsilon 设置为 \textstyle 0.01,之后对目标函数使用诸如批量梯度下降法的最优化算法。因为 \textstyle J(W, b) 是一个非凸函数,梯度下降法很可能会收敛到局部最优解;但是在实际应用中,梯度下降法通常能得到令人满意的结果。最后,需要再次强调的是,要将参数进行随机初始化,而不是全部置为 \textstyle 0。如果所有参数都用相同的值作为初始值,那么所有隐藏层单元最终会得到与输入值有关的、相同的函数(也就是说,对于所有 \textstyle i\textstyle W^{(1)}_{ij}都会取相同的值,那么对于任何输入 \textstyle x 都会有:\textstyle a^{(2)}_1 = a^{(2)}_2 = a^{(2)}_3 = \ldots )。随机初始化的目的是使对称失效


梯度下降法中每一次迭代都按照如下公式对参数 \textstyle W 和\textstyle b 进行更新:

\begin{align}W_{ij}^{(l)} &= W_{ij}^{(l)} - \alpha \frac{\partial}{\partial W_{ij}^{(l)}} J(W,b) \\b_{i}^{(l)} &= b_{i}^{(l)} - \alpha \frac{\partial}{\partial b_{i}^{(l)}} J(W,b)\end{align}

其中 \textstyle \alpha 是学习速率。其中关键步骤是计算偏导数。我们现在来讲一下反向传播算法,它是计算偏导数的一种有效方法


我们首先来讲一下如何使用反向传播算法来计算 \textstyle \frac{\partial}{\partial W_{ij}^{(l)}} J(W,b; x, y) 和 \textstyle \frac{\partial}{\partial b_{i}^{(l)}} J(W,b; x, y),这两项是单个样例 \textstyle (x,y) 的代价函数 \textstyle J(W,b;x,y) 的偏导数。一旦我们求出该偏导数,就可以推导出整体代价函数 \textstyle J(W,b) 的偏导数:


\begin{align}\frac{\partial}{\partial W_{ij}^{(l)}} J(W,b) &=\left[ \frac{1}{m} \sum_{i=1}^m \frac{\partial}{\partial W_{ij}^{(l)}} J(W,b; x^{(i)}, y^{(i)}) \right] + \lambda W_{ij}^{(l)} \\\frac{\partial}{\partial b_{i}^{(l)}} J(W,b) &=\frac{1}{m}\sum_{i=1}^m \frac{\partial}{\partial b_{i}^{(l)}} J(W,b; x^{(i)}, y^{(i)})\end{align}

以上两行公式稍有不同,第一行比第二行多出一项,是因为权重衰减是作用于 \textstyle W 而不是 \textstyle b


反向传播算法的思路如下:给定一个样例 \textstyle (x,y),我们首先进行“前向传导”运算,计算出网络中所有的激活值,包括 \textstyle h_{W,b}(x) 的输出值。之后,针对第 \textstyle l层的每一个节点 \textstyle i,我们计算出其“残差” \textstyle \delta^{(l)}_i,该残差表明了该节点对最终输出值的残差产生了多少影响。对于最终的输出节点,我们可以直接算出网络产生的激活值与实际值之间的差距,我们将这个差距定义为 \textstyle \delta^{(n_l)}_i (第 \textstyle n_l 层表示输出层)。对于隐藏单元我们如何处理呢?我们将基于节点(译者注:第 \textstyle l+1层节点)残差的加权平均值计算 \textstyle \delta^{(l)}_i,这些节点以 \textstyle a^{(l)}_i 作为输入。

具体BP算法的数学推导请参照机器学习《BP算法详谈》。


中英文对照

反向传播算法 Backpropagation Algorithm
(批量)梯度下降法 (batch) gradient descent
(整体)代价函数 (overall) cost function
方差 squared-error
均方差 average sum-of-squares error
规则化项 regularization term
权重衰减 weight decay
偏置项 bias terms
贝叶斯规则化方法 Bayesian regularization method
高斯先验概率 Gaussian prior
极大后验估计 MAP
极大似然估计 maximum likelihood estimation
激活函数 activation function
双曲正切函数 tanh function
非凸函数 non-convex function
隐藏层单元 hidden (layer) units
对称失效 symmetry breaking
学习速率 learning rate
前向传导 forward pass
假设值 hypothesis
残差 error term
加权平均值 weighted average
前馈传导 feedforward pass
阿达马乘积 Hadamard product
前向传播 forward propagation

这篇关于深度学习基础2(反向传播算法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1054575

相关文章

51单片机学习记录———定时器

文章目录 前言一、定时器介绍二、STC89C52定时器资源三、定时器框图四、定时器模式五、定时器相关寄存器六、定时器练习 前言 一个学习嵌入式的小白~ 有问题评论区或私信指出~ 提示:以下是本篇文章正文内容,下面案例可供参考 一、定时器介绍 定时器介绍:51单片机的定时器属于单片机的内部资源,其电路的连接和运转均在单片机内部完成。 定时器作用: 1.用于计数系统,可

问题:第一次世界大战的起止时间是 #其他#学习方法#微信

问题:第一次世界大战的起止时间是 A.1913 ~1918 年 B.1913 ~1918 年 C.1914 ~1918 年 D.1914 ~1919 年 参考答案如图所示

[word] word设置上标快捷键 #学习方法#其他#媒体

word设置上标快捷键 办公中,少不了使用word,这个是大家必备的软件,今天给大家分享word设置上标快捷键,希望在办公中能帮到您! 1、添加上标 在录入一些公式,或者是化学产品时,需要添加上标内容,按下快捷键Ctrl+shift++就能将需要的内容设置为上标符号。 word设置上标快捷键的方法就是以上内容了,需要的小伙伴都可以试一试呢!

AssetBundle学习笔记

AssetBundle是unity自定义的资源格式,通过调用引擎的资源打包接口对资源进行打包成.assetbundle格式的资源包。本文介绍了AssetBundle的生成,使用,加载,卸载以及Unity资源更新的一个基本步骤。 目录 1.定义: 2.AssetBundle的生成: 1)设置AssetBundle包的属性——通过编辑器界面 补充:分组策略 2)调用引擎接口API

RedHat运维-Linux文本操作基础-AWK进阶

你不用整理,跟着敲一遍,有个印象,然后把它保存到本地,以后要用再去看,如果有了新东西,你自个再添加。这是我参考牛客上的shell编程专项题,只不过换成了问答的方式而已。不用背,就算是我自己亲自敲,我现在好多也记不住。 1. 输出nowcoder.txt文件第5行的内容 2. 输出nowcoder.txt文件第6行的内容 3. 输出nowcoder.txt文件第7行的内容 4. 输出nowcode

Javascript高级程序设计(第四版)--学习记录之变量、内存

原始值与引用值 原始值:简单的数据即基础数据类型,按值访问。 引用值:由多个值构成的对象即复杂数据类型,按引用访问。 动态属性 对于引用值而言,可以随时添加、修改和删除其属性和方法。 let person = new Object();person.name = 'Jason';person.age = 42;console.log(person.name,person.age);//'J

大学湖北中医药大学法医学试题及答案,分享几个实用搜题和学习工具 #微信#学习方法#职场发展

今天分享拥有拍照搜题、文字搜题、语音搜题、多重搜题等搜题模式,可以快速查找问题解析,加深对题目答案的理解。 1.快练题 这是一个网站 找题的网站海量题库,在线搜题,快速刷题~为您提供百万优质题库,直接搜索题库名称,支持多种刷题模式:顺序练习、语音听题、本地搜题、顺序阅读、模拟考试、组卷考试、赶快下载吧! 2.彩虹搜题 这是个老公众号了 支持手写输入,截图搜题,详细步骤,解题必备

Vim使用基础篇

本文内容大部分来自 vimtutor,自带的教程的总结。在终端输入vimtutor 即可进入教程。 先总结一下,然后再分别介绍正常模式,插入模式,和可视模式三种模式下的命令。 目录 看完以后的汇总 1.正常模式(Normal模式) 1.移动光标 2.删除 3.【:】输入符 4.撤销 5.替换 6.重复命令【. ; ,】 7.复制粘贴 8.缩进 2.插入模式 INSERT

零基础STM32单片机编程入门(一)初识STM32单片机

文章目录 一.概要二.单片机型号命名规则三.STM32F103系统架构四.STM32F103C8T6单片机启动流程五.STM32F103C8T6单片机主要外设资源六.编程过程中芯片数据手册的作用1.单片机外设资源情况2.STM32单片机内部框图3.STM32单片机管脚图4.STM32单片机每个管脚可配功能5.单片机功耗数据6.FALSH编程时间,擦写次数7.I/O高低电平电压表格8.外设接口

《offer来了》第二章学习笔记

1.集合 Java四种集合:List、Queue、Set和Map 1.1.List:可重复 有序的Collection ArrayList: 基于数组实现,增删慢,查询快,线程不安全 Vector: 基于数组实现,增删慢,查询快,线程安全 LinkedList: 基于双向链实现,增删快,查询慢,线程不安全 1.2.Queue:队列 ArrayBlockingQueue: