路径规划 | 图解遗传(GA)算法(附ROS C++仿真)

2024-06-12 13:36

本文主要是介绍路径规划 | 图解遗传(GA)算法(附ROS C++仿真),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 0 专栏介绍
  • 1 从进化论说起
  • 2 遗传算法基本概念
  • 3 遗传算法流程
  • 4 遗传算法ROS实现

0 专栏介绍

🔥附C++/Python/Matlab全套代码🔥课程设计、毕业设计、创新竞赛必备!详细介绍全局规划(图搜索、采样法、智能算法等);局部规划(DWA、APF等);曲线优化(贝塞尔曲线、B样条曲线等)。

🚀详情:图解自动驾驶中的运动规划(Motion Planning),附几十种规划算法


在这里插入图片描述

1 从进化论说起

从仿生学的角度来看,遗传算法(Genetic Algorithm, GA)是模拟自然界中生物进化过程的一种计算方法。它借鉴了达尔文的进化论中的许多概念,并将这些概念应用到解决优化问题上,例如

  • 基因编码: 在遗传算法中,问题的解被编码成为一串基因序列,类似于生物体的染色体。这种编码方式可以直接映射到生物体的基因结构,每个基因对应于解空间中的一个特定参数或变量。
  • 种群与个体: 遗传算法通过维护一个包含多个个体(解)的种群来模拟自然种群的概念。每个个体都代表了解决问题的一个可能方案,类似于自然界中的个体生物。
  • 适应度评估: 遗传算法中的适应度评估类似于生物体在自然选择过程中的适应度。每个个体根据其解决方案在问题空间中的表现被赋予一个适应度分数,用于评价其优劣。
  • 选择与交叉: 通过选择和交叉操作,遗传算法模拟了生物繁殖过程中的自然选择和基因交换。适应度较高的个体更有可能被选择为父代,并且它们的基因会通过交叉操作进行组合,产生新的后代个体。
  • 变异: 变异操作在遗传算法中引入了个体基因的随机变化,类似于自然界中的基因突变。这种变异可以增加种群的多样性,从而有助于避免陷入局部最优解。

在这里插入图片描述

从这些角度来看,遗传算法可以被视为一种模仿生物进化过程的计算方法,它通过模拟生物体的繁殖、变异和适应度评估等过程,来寻找问题空间中的最优解。这种仿生学的视角不仅帮助我们理解遗传算法的原理,也为我们提供了一种全新的优化问题求解思路。

2 遗传算法基本概念

遗传算法的基本概念如下:

  • M M M:种群数量;
  • x \boldsymbol{x} x:染色体,其对应可行域中的一个可行解,染色体分量 称为基因片段,基因片段是发生交叉、变异的基本单位;
  • f i t ( ⋅ ) fit\left( \cdot \right) fit():个体适应度函数,使目标函数越小的染色体对应的适应度越高;
  • 选择算子:通过适应度从当前种群中筛选较优的染色体集合,并将其特性遗传到下一代种群,实现“优胜劣汰”的进化机制,筛选算法有轮盘赌筛选、精英筛选、排序筛选等,本文采用分层筛选法;
  • 交叉算子:以一定的概率将两个匹配染色体中的部分基因片段互换,产生两个新的染色体,实现“同源染色体交叉互换”的进化特征,提高算法搜索能力,交叉算法有:均匀交叉、单点交叉、多点交叉等,本文采用多点交叉;
  • 变异算子:以一定的概率将染色体的部分基因进行突变,产生新染色体,实现“基因突变”的进化特征,增强种群遗传因子多样性,缓解算法进入局部最优的概率,变异算法有:高斯变异、基本位变异、均匀变异等,本文采用基本位变异。

3 遗传算法流程

遗传算法基本原理如下所示

在这里插入图片描述

4 遗传算法ROS实现

核心代码如下所示

bool GA::plan(const Node& start, const Node& goal, std::vector<Node>& path, std::vector<Node>& expand)
{// variable initializationdouble init_fitness;Genets best_genet;PositionSequence init_positions;std::vector<Genets> genets_swarm;std::vector<Genets> genets_parent;std::vector<Genets> genets_children;// Generate initial position of genets swarminitializePositions(init_positions, start, goal, init_mode_);// genets initializationfor (int i = 0; i < n_genets_; ++i){std::vector<std::pair<int, int>> init_position;if ((i < n_inherited_) && (inherited_genets_.size() == n_inherited_))init_position = inherited_genets_[i].best_pos;elseinit_position = init_positions[i];// Calculate fitnessinit_fitness = calFitnessValue(init_position);if ((i == 0) || (init_fitness > best_genet.fitness)){best_genet.fitness = init_fitness;best_genet.position = init_position;}// Create and add genets objects to containersgenets_swarm.emplace_back(init_position, init_fitness);}// random datastd::random_device rd;std::mt19937 gen(rd());// Iterative optimizationfor (size_t iter = 0; iter < max_iter_; iter++){selection(genets_swarm, genets_parent);genets_children = genets_parent;std::rotate(genets_children.begin(), genets_children.begin() + 1, genets_children.end());std::vector<std::thread> genets_list = std::vector<std::thread>(genets_parent.size());for (size_t i = 0; i < genets_parent.size(); ++i)genets_list[i] = std::thread(&GA::optimizeGenets, this, std::cref(genets_parent[i]), std::ref(genets_children[i]),std::ref(best_genet), i, std::ref(gen), std::ref(expand));for (size_t i = 0; i < genets_parent.size(); ++i)genets_list[i].join();// Copy the elements from genets_parent and genets_children to genets_swarmstd::copy(genets_children.begin(), genets_children.end(), genets_swarm.begin());std::copy(genets_parent.begin(), genets_parent.end(), genets_swarm.begin() + genets_children.size());}// Generating Paths from Optimal Genets...return !path.empty();
}

在这里插入图片描述

完整工程代码请联系下方博主名片获取


🔥 更多精彩专栏

  • 《ROS从入门到精通》
  • 《Pytorch深度学习实战》
  • 《机器学习强基计划》
  • 《运动规划实战精讲》

👇源码获取 · 技术交流 · 抱团学习 · 咨询分享 请联系👇

这篇关于路径规划 | 图解遗传(GA)算法(附ROS C++仿真)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1054358

相关文章

关于C++中的虚拟继承的一些总结(虚拟继承,覆盖,派生,隐藏)

1.为什么要引入虚拟继承 虚拟继承是多重继承中特有的概念。虚拟基类是为解决多重继承而出现的。如:类D继承自类B1、B2,而类B1、B2都继承自类A,因此在类D中两次出现类A中的变量和函数。为了节省内存空间,可以将B1、B2对A的继承定义为虚拟继承,而A就成了虚拟基类。实现的代码如下: class A class B1:public virtual A; class B2:pu

C++对象布局及多态实现探索之内存布局(整理的很多链接)

本文通过观察对象的内存布局,跟踪函数调用的汇编代码。分析了C++对象内存的布局情况,虚函数的执行方式,以及虚继承,等等 文章链接:http://dev.yesky.com/254/2191254.shtml      论C/C++函数间动态内存的传递 (2005-07-30)   当你涉及到C/C++的核心编程的时候,你会无止境地与内存管理打交道。 文章链接:http://dev.yesky

C++的模板(八):子系统

平常所见的大部分模板代码,模板所传的参数类型,到了模板里面,或实例化为对象,或嵌入模板内部结构中,或在模板内又派生了子类。不管怎样,最终他们在模板内,直接或间接,都实例化成对象了。 但这不是唯一的用法。试想一下。如果在模板内限制调用参数类型的构造函数会发生什么?参数类的对象在模板内无法构造。他们只能从模板的成员函数传入。模板不保存这些对象或者只保存他们的指针。因为构造函数被分离,这些指针在模板外

随想录 Day 69 并查集 107. 寻找存在的路径

随想录 Day 69 并查集 107. 寻找存在的路径 理论基础 int n = 1005; // n根据题目中节点数量而定,一般比节点数量大一点就好vector<int> father = vector<int> (n, 0); // C++里的一种数组结构// 并查集初始化void init() {for (int i = 0; i < n; ++i) {father[i] = i;}

C++工程编译链接错误汇总VisualStudio

目录 一些小的知识点 make工具 可以使用windows下的事件查看器崩溃的地方 dumpbin工具查看dll是32位还是64位的 _MSC_VER .cc 和.cpp 【VC++目录中的包含目录】 vs 【C/C++常规中的附加包含目录】——头文件所在目录如何怎么添加,添加了以后搜索头文件就会到这些个路径下搜索了 include<> 和 include"" WinMain 和

C/C++的编译和链接过程

目录 从源文件生成可执行文件(书中第2章) 1.Preprocessing预处理——预处理器cpp 2.Compilation编译——编译器cll ps:vs中优化选项设置 3.Assembly汇编——汇编器as ps:vs中汇编输出文件设置 4.Linking链接——链接器ld 符号 模块,库 链接过程——链接器 链接过程 1.简单链接的例子 2.链接过程 3.地址和

C++必修:模版的入门到实践

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 所属专栏:C++学习 贝蒂的主页:Betty’s blog 1. 泛型编程 首先让我们来思考一个问题,如何实现一个交换函数? void swap(int& x, int& y){int tmp = x;x = y;y = tmp;} 相信大家很快就能写出上面这段代码,但是如果要求这个交换函数支持字符型

大语言模型(LLMs)能够进行推理和规划吗?

大语言模型(LLMs),基本上是经过强化训练的 n-gram 模型,它们在网络规模的语言语料库(实际上,可以说是我们文明的知识库)上进行了训练,展现出了一种超乎预期的语言行为,引发了我们的广泛关注。从训练和操作的角度来看,LLMs 可以被认为是一种巨大的、非真实的记忆库,相当于为我们所有人提供了一个外部的系统 1(见图 1)。然而,它们表面上的多功能性让许多研究者好奇,这些模型是否也能在通常需要系

ROS话题通信流程自定义数据格式

ROS话题通信流程自定义数据格式 需求流程实现步骤定义msg文件编辑配置文件编译 在 ROS 通信协议中,数据载体是一个较为重要组成部分,ROS 中通过 std_msgs 封装了一些原生的数据类型,比如:String、Int32、Int64、Char、Bool、Empty… 但是,这些数据一般只包含一个 data 字段,结构的单一意味着功能上的局限性,当传输一些复杂的数据,比如:

C++入门01

1、.h和.cpp 源文件 (.cpp)源文件是C++程序的实际实现代码文件,其中包含了具体的函数和类的定义、实现以及其他相关的代码。主要特点如下:实现代码: 源文件中包含了函数、类的具体实现代码,用于实现程序的功能。编译单元: 源文件通常是一个编译单元,即单独编译的基本单位。每个源文件都会经过编译器的处理,生成对应的目标文件。包含头文件: 源文件可以通过#include指令引入头文件,以使