DeepSORT(目标跟踪算法)中的初始化卡尔曼滤波器的状态向量和协方差矩阵

本文主要是介绍DeepSORT(目标跟踪算法)中的初始化卡尔曼滤波器的状态向量和协方差矩阵,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DeepSORT(目标跟踪算法)中的初始化卡尔曼滤波器的状态向量和协方差矩阵

flyfish

如果看了下面遇到了状态转移矩阵,可以先看 DeepSORT(目标跟踪算法)中的卡尔曼滤波 - 看了就会的状态转移矩阵 ,这里做了非常详细的描述

import numpy as npnp.set_printoptions(suppress=True)class KalmanFilter(object):def __init__(self):ndim, dt = 4, 1.0# 创建卡尔曼滤波模型矩阵self._motion_mat = np.eye(2 * ndim)for i in range(ndim):self._motion_mat[i, ndim + i] = dt#运动矩阵(F)将线性关系表达为矩阵形式    print("__init__ _motion_mat:",self._motion_mat)    #更新矩阵(H)用于将观测结果转换为状态向量。在这个例子中,观测结果只包含位置和大小(不包括速度),所以它是一个4x8的矩阵:self._update_mat = np.eye(ndim, 2 * ndim)print("__init__ _update_mat:",self._update_mat)  # _std_weight_position = 1. / 20 表示位置的不确定性权重,值为0.05。# _std_weight_velocity = 1. / 160 表示速度的不确定性权重,值为0.00625。#位置的不确定性较大,速度的不确定性较小,这使得滤波器对位置变化更加敏感,而对速度变化更加稳定。self._std_weight_position = 1. / 20self._std_weight_velocity = 1. / 160def initiate(self, measurement):#mean_pos:代表观测到的位置向量 measurement。# 假设 measurement 包含物体的检测信息(如中心点的坐标和尺寸),通常为一个长度为4的向量 [x, y, a, h],其中 x 和 y 是位置坐标,a 是纵横比(宽/高),h 是高度。mean_pos = measurementprint("initiate mean_pos:",mean_pos)#mean_vel:代表速度向量的初始均值。这里初始化为与 mean_pos 相同长度的零向量,因为在初始化时,通常没有速度信息mean_vel = np.zeros_like(mean_pos)print("initiate mean_vel:",mean_vel)#方便的垂直拼接数组mean = np.r_[mean_pos, mean_vel]print("initiate mean:",mean)std = [2 * self._std_weight_position * measurement[3],2 * self._std_weight_position * measurement[3],1e-2,2 * self._std_weight_position * measurement[3],10 * self._std_weight_velocity * measurement[3],10 * self._std_weight_velocity * measurement[3],1e-5,10 * self._std_weight_velocity * measurement[3]]print("initiate std:",std)print("initiate np.square(std):",np.square(std))# np.square(std)计算标准差的平方,即方差。# np.diag(np.square(std)) 构造一个对角矩阵,主对角线上是方差值,其它位置为零。这形成了初始协方差矩阵,表示系统状态的不确定性。#covariance矩阵表示初始状态的不确定性。covariance = np.diag(np.square(std))return mean, covariance# 示例检测到的物体位置和尺寸
measurement = np.array([10, 5, 1.2, 4])# 创建 KalmanFilter 实例
kf = KalmanFilter()# 调用 initiate 方法
mean, covariance = kf.initiate(measurement)# 输出结果
print("Mean:")
print(mean)
print("Covariance:")
print(covariance)

上面代码加了注释,也可以先看 DeepSORT(目标跟踪算法)中的卡尔曼滤波 - 看了就会的状态转移矩阵 更详细。
结果

__init__ _motion_mat: [[1. 0. 0. 0. 1. 0. 0. 0.][0. 1. 0. 0. 0. 1. 0. 0.][0. 0. 1. 0. 0. 0. 1. 0.][0. 0. 0. 1. 0. 0. 0. 1.][0. 0. 0. 0. 1. 0. 0. 0.][0. 0. 0. 0. 0. 1. 0. 0.][0. 0. 0. 0. 0. 0. 1. 0.][0. 0. 0. 0. 0. 0. 0. 1.]]
__init__ _update_mat: [[1. 0. 0. 0. 0. 0. 0. 0.][0. 1. 0. 0. 0. 0. 0. 0.][0. 0. 1. 0. 0. 0. 0. 0.][0. 0. 0. 1. 0. 0. 0. 0.]]
initiate mean_pos: [10.   5.   1.2  4. ]
initiate mean_vel: [0. 0. 0. 0.]
initiate mean: [10.   5.   1.2  4.   0.   0.   0.   0. ]
initiate std: [0.4, 0.4, 0.01, 0.4, 0.25, 0.25, 1e-05, 0.25]
initiate np.square(std): [0.16   0.16   0.0001 0.16   0.0625 0.0625 0.     0.0625]
Mean:
[10.   5.   1.2  4.   0.   0.   0.   0. ]
Covariance:
[[0.16   0.     0.     0.     0.     0.     0.     0.    ][0.     0.16   0.     0.     0.     0.     0.     0.    ][0.     0.     0.0001 0.     0.     0.     0.     0.    ][0.     0.     0.     0.16   0.     0.     0.     0.    ][0.     0.     0.     0.     0.0625 0.     0.     0.    ][0.     0.     0.     0.     0.     0.0625 0.     0.    ][0.     0.     0.     0.     0.     0.     0.     0.    ][0.     0.     0.     0.     0.     0.     0.     0.0625]]

代码中的 self._motion_mat(运动矩阵)实际上就是状态转移矩阵(State Transition Matrix),通常表示为 F \mathbf{F} F。在卡尔曼滤波器的术语中,运动矩阵和状态转移矩阵指的是同一个概念,即描述系统状态在时间上的演变关系。

  • 运动矩阵(Motion Matrix):这个名称强调了该矩阵描述的是系统状态如何随时间变化,即系统的运动学特性。
  • 状态转移矩阵(State Transition Matrix):这个名称更通用,强调了该矩阵在卡尔曼滤波中的作用,即将当前状态转移到下一时刻的状态。
    两者虽然名称不同,但在具体应用中它们的作用和定义是相同的。在不同的文献或代码实现中,有不同的名称来强调其特定的用途或背景,但本质上它们是相同的。

对于状态向量 z \mathbf{z} z
z = [ x , y , a , h , v x , v y , v a , v h ] T \mathbf{z} = [x, y, a, h, vx, vy, va, vh]^T z=[x,y,a,h,vx,vy,va,vh]T
这里:

  • x x x y y y 是位置坐标,
  • a a a 是纵横比(宽度/高度),
  • h h h 是高度,
  • v x vx vx v y vy vy 是位置的速度,
  • v a va va 是纵横比的变化率,
  • v h vh vh 是高度的变化率。
    std 是一个包含标准差的列表,用于初始化协方差矩阵。每个标准差对应于状态向量中不同元素的不确定性。具体的标准差取值和倍率因素如下:

不确定性采用了measurement[3],它是当前测量值中的高度

2 * self._std_weight_position * measurement[3]:代表位置 x 的标准差,乘以位置权重系数和高度(或某个相关度量)。self._std_weight_position 是位置的不确定性权重。
2 * self._std_weight_position * measurement[3]:代表位置 y 的标准差。
1e-2:代表纵横比 a 的标准差,一个固定的小值。
2 * self._std_weight_position * measurement[3]:代表高度 h 的标准差。
10 * self._std_weight_velocity * measurement[3]:代表速度 vx 的标准差,乘以速度权重系数和高度。self._std_weight_velocity 是速度的不确定性权重。
10 * self._std_weight_velocity * measurement[3]:代表速度 vy 的标准差。
1e-5:代表纵横比变化率 va 的标准差,一个固定的很小的值。
10 * self._std_weight_velocity * measurement[3]:代表高度变化率 vh 的标准差。

倍率因素(2* 和 10*)
倍率因素是根据经验或具体应用调整的,用于控制不确定性的初始值:

2 *:位置的不确定性权重。位置的不确定性通常根据物体检测框的大小(如高度)来确定。
10 *:速度的不确定性权重。速度的不确定性通常比位置的不确定性大,因此乘以一个较大的系数,以反映速度估计的高不确定性。

协方差矩阵
也就是上面代码中的Covariance
描述状态估计的不确定性,是一个对称矩阵。在初始化时,它通常是对角矩阵,对角线元素表示各个状态变量的初始方差。在预测和更新步骤中,协方差矩阵会不断调整以反映新的不确定性。协方差矩阵在卡尔曼滤波器中用于描述状态估计的不确定性。具体来说,它表示状态向量中每个元素的方差(不确定性)以及这些元素之间的协方差。协方差矩阵是对称的,并且在滤波器的预测和更新步骤中不断更新。

这篇关于DeepSORT(目标跟踪算法)中的初始化卡尔曼滤波器的状态向量和协方差矩阵的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1052421

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

IIS 7.0 及更高版本中的 FTP 状态代码

《IIS7.0及更高版本中的FTP状态代码》本文介绍IIS7.0中的FTP状态代码,方便大家在使用iis中发现ftp的问题... 简介尝试使用 FTP 访问运行 Internet Information Services (IIS) 7.0 或更高版本的服务器上的内容时,IIS 将返回指示响应状态的数字代

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

C++类和对象之初始化列表的使用方式

《C++类和对象之初始化列表的使用方式》:本文主要介绍C++类和对象之初始化列表的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C++初始化列表详解:性能优化与正确实践什么是初始化列表?初始化列表的三大核心作用1. 性能优化:避免不必要的赋值操作2. 强

SpringIOC容器Bean初始化和销毁回调方式

《SpringIOC容器Bean初始化和销毁回调方式》:本文主要介绍SpringIOC容器Bean初始化和销毁回调方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录前言1.@Bean指定初始化和销毁方法2.实现接口3.使用jsR250总结前言Spring Bea

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

Spring实现Bean的初始化和销毁的方式

《Spring实现Bean的初始化和销毁的方式》:本文主要介绍Spring实现Bean的初始化和销毁的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Bean的初始化二、Bean的销毁总结在前面的章节当中介绍完毕了ApplicationContext,也就

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展