论文阅读(一种新的稀疏PCA求解方式)Sparse PCA: A Geometric Approach

本文主要是介绍论文阅读(一种新的稀疏PCA求解方式)Sparse PCA: A Geometric Approach,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这是一篇来自JMLR的论文,论文主要关注稀疏主成分分析(Sparse PCA)的问题,提出了一种新颖的几何解法(GeoSPCA)。

该方法相比传统稀疏PCA的解法的优点:1)更容易找到全局最优;2)计算效率更高;3)因为不再需要计算存储整个协方差矩阵,所以对存储资源需求更少;4)GeoSPCA能够一次性构建所有主成分,而不是通过迭代的方式逐步添加,这有助于避免因迭代过程中的数据秩减而导致的信息损失。

这个笔记不会记录原文中过于数学的证明和推理部分,仅整理原理、结论和算法流程等。对数学推理感兴趣的,可自行到以下地址查看原文:

https://www.jmlr.org/papers/volume24/22-0088/22-0088.pdf

1,什么是稀疏PCA

首先给不了解的读者补充一下稀疏PCA概念:

普通PCA得到的主成分有大量非0的原始变量,所以主成分其实是不太清晰的。稀疏PCA通过减少构建主成分的变量数量,可以提高模型的可解释性、预测能力或降低操作成本。相比较而言,稀疏PCA更适用于需要模型解释性的场景。

稀疏PCA 在普通PCA的基础上,引入了一个惩罚函数。这样做的目的是使得大部分系数变为零,从而凸现出主成分的主要部分。

稀疏PCA的实现通常涉及到在标准的PCA优化问题中加入一个正则化项,以促使某些系数变为零。

2,现有稀疏PCA计算方式的缺陷

大多数现有方法通过迭代方式构建主成分(PCs),这些方法通常无法保证整体最优解,且计算成本较高。

3,本文提出的GeoSPCA方法

这种方法通过将问题转化为一个二元线性优化问题(BLO)来近似原始问题,从而绕开了非凸优化的问题。

GeoSPCA算法一次性构建所有主成分,而不是通过迭代的方式。这种方法通过引入一个参数η来近似原始问题,并通过一系列切割平面算法(cut generation algorithm)来逐步改进解。

切割平面算法的核心思想是逐步添加约束条件(即切割平面),以逼近问题的最优解。

3.1 整体流程思路:

  1. 初始化:算法开始时,首先解决一个没有额外约束的基本二元线性优化问题(BLO),以获得初始解。

  2. 计算当前解的正交投影:对于当前解,计算数据矩阵在由当前解定义的子空间上的正交投影。

  3. 检查投影误差:计算当前解的正交投影与原始数据矩阵之间的差异(即误差)。如果这个误差小于预设的阈值η,当前解就是可接受的。

  4. 生成切割平面:如果投影误差超过阈值η,算法会生成一个新的线性约束(切割平面),该约束会排除当前解,迫使算法在下一次迭代中寻找更好的解。

  5. 迭代过程:将新生成的切割平面添加到优化问题中,并重新解决BLO问题以获得新的解。这个过程会不断重复,直到找到满足误差阈值的解或达到预设的迭代次数。

  6. 终止条件:算法在以下情况下终止:1)找到一个满足误差阈值η的解。2)达到预设的最大迭代次数。3)无法进一步改进当前解。

注:其中,线性约束(也称为切割平面或切割约束)是一种限制变量取值范围的表达式,它以线性方程或不等式的形式出现。

3.2 具体落实的算法

在具体落实层面,原文提出了2个算法。

算法1在给定参数η的情况下,找到一组最优支持(Optimal support),这些支持用于构建稀疏主成分。

算法2是从较大的η值开始,逐步细化η的值,以逼近最优的η值,同时也获得稀疏PCA的最优解。

算法1:

算法步骤如下:

  1. 初始化:开始时,使用一个二元线性优化(BLO)问题,目标是最大化数据矩阵列的范数加权和,约束条件是支持的大小不超过k。

  2. 求解BLO问题:使用BLO求解器找到当前问题的最优解 s∗。

  3. 计算正交投影:对找到的解 s∗,计算数据矩阵在由解 s∗ 定义的子空间上的正交投影,并求解PCA以得到对应的主成分。

  4. 检查投影误差:计算正交投影与原始数据矩阵之间的Frobenius范数误差 η(s∗)。(注:两个矩阵之间的Frobenius范数一般指的是两个矩阵差的Frobenius范数,也就是同位置元素相减后的平方和的平方根)

  5. 生成切割平面:如果误差 η(s∗)超过给定的阈值η,则生成一个新的线性约束(切割平面),将其添加到BLO问题中,以排除当前解。

  6. 迭代:重复求解BLO问题,并根据需要生成和添加新的切割平面,直到找到满足误差阈值的解。

  7. 返回结果:算法返回找到的支持集,这些支持集定义了稀疏主成分。

 算法2:

算法步骤如下:

  1. 初始化:设置初始η值 η0和最优解的η值 η∗ 为较大的值。

  2. 迭代过程:进行多次迭代,每次迭代使用算法1来求解当前η值下的BLO问题。

  3. 更新η值:如果当前解的η值 ηt小于 η∗,并且当前解的函数值 f(ηt) 高于 η∗,则更新 η∗为 ηt,并减小η值以进行下一步迭代。

  4. 检查停止条件:如果经过λ次迭代后没有改进,或者达到预设的迭代次数,则停止迭代。

  5. 返回结果:算法返回找到的近似最优解的支持集 s∗,以及对应的η值 η∗和函数值 f(η*)。

这篇关于论文阅读(一种新的稀疏PCA求解方式)Sparse PCA: A Geometric Approach的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1052400

相关文章

Debezium 与 Apache Kafka 的集成方式步骤详解

《Debezium与ApacheKafka的集成方式步骤详解》本文详细介绍了如何将Debezium与ApacheKafka集成,包括集成概述、步骤、注意事项等,通过KafkaConnect,D... 目录一、集成概述二、集成步骤1. 准备 Kafka 环境2. 配置 Kafka Connect3. 安装 D

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

SQL 中多表查询的常见连接方式详解

《SQL中多表查询的常见连接方式详解》本文介绍SQL中多表查询的常见连接方式,包括内连接(INNERJOIN)、左连接(LEFTJOIN)、右连接(RIGHTJOIN)、全外连接(FULLOUTER... 目录一、连接类型图表(ASCII 形式)二、前置代码(创建示例表)三、连接方式代码示例1. 内连接(I

Android里面的Service种类以及启动方式

《Android里面的Service种类以及启动方式》Android中的Service分为前台服务和后台服务,前台服务需要亮身份牌并显示通知,后台服务则有启动方式选择,包括startService和b... 目录一句话总结:一、Service 的两种类型:1. 前台服务(必须亮身份牌)2. 后台服务(偷偷干

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

JS 实现复制到剪贴板的几种方式小结

《JS实现复制到剪贴板的几种方式小结》本文主要介绍了JS实现复制到剪贴板的几种方式小结,包括ClipboardAPI和document.execCommand这两种方法,具有一定的参考价值,感兴趣的... 目录一、Clipboard API相关属性方法二、document.execCommand优点:缺点:

Python创建Excel的4种方式小结

《Python创建Excel的4种方式小结》这篇文章主要为大家详细介绍了Python中创建Excel的4种常见方式,文中的示例代码简洁易懂,具有一定的参考价值,感兴趣的小伙伴可以学习一下... 目录库的安装代码1——pandas代码2——openpyxl代码3——xlsxwriterwww.cppcns.c

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

CSS弹性布局常用设置方式

《CSS弹性布局常用设置方式》文章总结了CSS布局与样式的常用属性和技巧,包括视口单位、弹性盒子布局、浮动元素、背景和边框样式、文本和阴影效果、溢出隐藏、定位以及背景渐变等,通过这些技巧,可以实现复杂... 一、单位元素vm 1vm 为视口的1%vh 视口高的1%vmin 参照长边vmax 参照长边re