深度学习tracking学习笔记(2):图像/视觉显著性检测技术发展情况梳理(Saliency Detection、Visual Attention)

本文主要是介绍深度学习tracking学习笔记(2):图像/视觉显著性检测技术发展情况梳理(Saliency Detection、Visual Attention),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

reference:
http://blog.csdn.net/anshan1984/article/details/8657176
http://blog.csdn.net/huangbo10/article/details/19788547?utm_source=tuicool&utm_medium=referral

关于显著度的研究是从生物研究发展而来,早期比较重要的工作是C.Koch与S.Ullman做的,时间可以追溯到1985年。
显著度的获取方式主要有两种:自上而下,从高层语义入手,其实目标检测等等也可以归入这一类中;更普遍的是自下而上,从底层特征入手。直到现在,第二种自下而上的方法仍是主流
从CV角度研究显著度问题从1998年开始,开创者是Itti。其最出名的文章是A model of saliency based visual attention for rapid scene analysis,发表在1998年的PAMI上。

这篇文章基本奠定了显著度研究的基本思路,即: 特征提取—>归一化—>特征综合/显著度计算—>显著性区域划分/兴趣点标定
在最初的文章中主要采取启发式的方法提取特征,依据生物学研究,主要提取亮度、色彩、旋转一致性三种特征,得到三种feature map。随后这些feature map被归一化以便综合,综合方法是简单的相加。从综合后的saliency map上提取前N个峰值即为寻求的interest point。
随后的很多研究都采取了这样的框架,针对特征提取/特征综合等等不同的阶段分别进行优化。
例如这篇:J. Harel, C. Koch, &P. Perona. Graph-based visual saliency. Advances in Neural Information Processing Systems, 19:545-552, 2006.
假定仍采用原先的特征提取方式,但是 综合阶段使用的不是线性组合而是马尔科夫随机场 ,获得了比Itti更好的效果。
另两篇Xiaodi Hou, Jonathan Harel and Christof Koch: Image Signature: Highlighting Sparse Salient Regions (PAMI 2012)
和R. Achanta, S. Hemami ,F. Estrada,& S. Süsstrunk, Frequency-tuned salient region detection. IEEE International Conference on Computer Vision and Pattern Recognition, 2009, pp.1597-1604.
则是定义了一种新的底层特征提取方法,计算saliency的过程仍采用马尔科夫随机场


采用条件随机场的比较著名的一篇文章应该是Tie Liu, Jian Sun, Nan-Ning Zheng, Xiaoou Tang and Heung-Yeung Shum. Learning to Detect A Salient Object. In Proc. IEEE Cont. on Computer Vision and pattern Recognition (CVPR), 2007.
引用665次!作者建立了一个10k级别的数据库(手工标注方框),并提出了系统的评估方法。


2007年,侯晓迪另辟蹊径,提出了一种完全不同的思路,称为频域残差法。这种方法 不考察前景的特点,反而去研究背景都具有那些特点 ,从图片中提取跟这些特点不符的就是interest point。
其考察背景特征的方法是计算图片的log频谱,发现对于自然图片,其曲线应该与1/f成正比。因此只需从待考察频谱中减去基准频谱,剩下的就是需要关注的部分。
R. Achanta, S. Hemami ,F. Estrada,& S. Süsstrunk, Frequency-tuned salient region detection. IEEE International Conference on Computer Vision and Pattern Recognition, 2009, pp.1597-1604.


在频域残差法的基础上,复旦大学有人提出了利用 相位谱 的方法。相位谱就是仅仅保留频谱分量的符号而不保存其值,这样可以获得更高的计算效率
在获得每个点的相位谱之后,两点之间的距离简单地用hamming距离表示,随后采用条件随机场进行优化。其文章发表于2008年CVPR。
Chenlei Guo, Qi Ma, Liming Zhang: Spatio-temporal Saliency detection using phase spectrum of quaternion fourier transform. CVPR 2008
同样采用相位谱的还有M. Holtzman-Gazit, L. Zelnik-Manor and I.Yavne, " Salient Edges: A MultiScale Approach", ECCV 2010 Workshop on Vision for Cognitive Tasks.
不同点是,他们还对图片提取了多种分辨率。其思想是, 无用的背景在多种分辨率下应该是相似的,而有用信息则只出现在某几层中。


同一拨人还做了大量细致的工作。S. Goferman, L. Zelnik-Manor, and A. Tal. Context-Aware Saliency Detection. CVPR 2010.
这篇文章中,他们提出应当同时考虑局部信息和全局信息,例如 注意力应该集中在某些特定区域而不是分散,距离视觉焦点更近的点容易被观察到 等等,效果拔群。


采用底层特征和高层(全局)特征结合方法的还有Tilke Judd, Krista Ehinger, Frédo Durand, Antonio Torralba.Learning to predict where people look,International Conference on Computer Vision, ICCV 2009.
这篇文章中,他们提取了三个层次的特征:一般的底层特征,自然场景中的地平线,人脸检测(采用V-J算法)。


以上是比较主流的做法。其余还有一些人,例如Xiaohui Shen and Ying Wu, "A Unified Approach to Salient Object Detection via Low Rank Matrix Recovery", in IEEE Conference on Computer Vision and Pattern Recognition (CVPR)(Oral), 2012.希望通过寻找图像在特征空间中的有效表示(可以将图片信息简洁的分为无用部分+有用部分)来解决问题。
Chuan Yang, Lihe Zhang, Huchuan Lu, Minghsuan Yang, Saliency Detection via Graph-Based Manifold Ranking, CVPR 2013.则希望通过流形嵌入解决问题,用到了大量的数学推导.


总结:从近几年的趋势来看,纯数学的 频域方法似乎没什么潜力 。人们更多的还是 关注有效的特征提取以及高层特征和底层特征的结合
saliency的问题具有特殊性,因为我们容易给出的ground truth是0或1,而不是0-1之间的连续值。这就让神经网络在这里难以训练,相反有的借助SVM的方法(Tilke Judd, Krista Ehinger, Frédo Durand, Antonio Torralba.Learning to predict where people look,International Conference on Computer Vision, ICCV 2009.)效果不错。


学习算法在这里发挥的作用似乎不是很大,可以从高层起到一些辅助作用(例如特定的类别和目标检测),但不本质。

当前更新日期:2013.08.04


1. 早期C. Koch与S. Ullman的研究工作.

他们提出了非常有影响力的生物启发模型。

C. Koch and S. Ullman . Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology, 4(4):219-227, 1985.

C. Koch and T. Poggio. Predicting the Visual World: Silence is Golden. Nature Neuroscience, 2(1):9–10, 1999.

C.Koch是加州理工大学Koch Lab的教授,后文的侯晓迪师从C. Koch进行博士研究。


2. 南加州大学iLab实验室Itti教授及其学生Siagian等的研究工作.

见http://ilab.usc.edu/publications/. 主页提供iLab Neuromorphic Vision C++ Toolkit。Christian Siagian博士期间的主要工作是生物学启发的机器人视觉定位研究(Biologically Inspired Mobile Robot Vision Localization).

L. Itti, C. Koch, & E. Niebur .A model of saliency based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11):1254-1259, 1998.

L. Itti and C. Koch. Computational Modelling of Visual Attention. Nature Reviews Neuroscience, 2(3):194–203, 2001.

L. Itti, & P. Baldi . Bayesian surprise attracts human attention. Advances in Neural Information Processing Systems, 19:547-554, 2005.

C. Siagian, L. Itti, Comparison of gist models in rapid scene categorization tasks, In: Proc. Vision Science Society Annual Meeting (VSS08), May 2008.


3. Caltech 的J. Harel研究工作.

Koch Lab的J. Harel在2006年提出基于图的视觉显著性检测. 有Matlab实现。http://www.klab.caltech.edu/~harel/share/gbvs/

J. Harel, C. Koch, &P. Perona. Graph-based visual saliency. Advances in Neural Information Processing Systems, 19:545-552, 2006.


4. Caltech 侯晓迪博士的研究工作.

他是上交硕士,后去加州理工大学读博。他提出的频域残差法(Spectral Residual)让人认识到数学的美。

X,Hou &L,Zhang. Saliency Detection: A spectral residual approach. IEEE Conference on Computer Vision and Pattern Recognition, 2007, pp.1-8.

Xiaodi Hou, Jonathan Harel and Christof Koch: Image Signature: Highlighting Sparse Salient Regions (PAMI 2012)

 同时推荐他出演的电影“The PHD Movie”:

http://movie.douban.com/subject/6855109/comments

这里有一个很好的JOKE:

http://bbs.sjtu.edu.cn/bbstcon,board,AI,reid,1203564832.html


5. 复旦大学Chenlei Guo, Liming Zhang的工作.

他们在频域残差法(Spectral Residual)的基础上提出相位谱(Phase Spectrum)方法。

Chenlei Guo, Qi Ma, Liming Zhang: Spatio-temporal Saliency detection using phase spectrum of quaternion fourier transform. CVPR 2008

Chenlei Guo, Liming Zhang: A Novel Multiresolution Spatiotemporal Saliency Detection Model and Its Applications in Image and Video Compression. IEEE Transactions on Image Processing 19(1): 185-198 (2010)


6. 瑞士洛桑联邦理工学院EPFL的R. Achanta研究工作.

R. Achanta, F. Estrada, P. Wils, & S. Süsstrunk, Salient region detection and segmentation. International Conference on Computer Vision Systems, 2008, pp.66-75.

R. Achanta and S. Süsstrunk, “Saliency Detection for Content-aware Image Resizing,” in IEEE International Conference on
Image Processing, 2009.

R. Achanta, S. Hemami ,F. Estrada,& S. Süsstrunk, Frequency-tuned salient region detection. IEEE International Conference on Computer Vision and Pattern Recognition, 2009, pp.1597-1604.

R. Achanta and S. Süsstrunk, Saliency Detection using Maximum Symmetric Surround, ICIP, 2010.


7. 西安交通大学TieLiu在微软亚研院的一些工作.

Tie Liu, Jian Sun, Nan-Ning Zheng, Xiaoou Tang and Heung-Yeung Shum. Learning to Detect A Salient Object. In Proc. IEEE Cont. on Computer Vision and pattern Recognition (CVPR), 2007.

Tie Liu, et. al. ,Video Attention: Learning to Detect A Salient Object Sequence, ICPR 2008.

 

8. 瑞典KIT的Boris Schauerte的研究工作.

B. Schauerte, R. Stiefelhagen, "Predicting Human Gaze using Quaternion DCT Image Signature Saliency and Face Detection". In Proc. 12th IEEE Workshop on the Applications of Computer Vision (WACV), 2012. (Best Student Paper Award)

B. Schauerte, R. Stiefelhagen, "Quaternion-based Spectral Saliency Detection for Eye Fixation Prediction". In Proc. 12th European Conference on Computer Vision (ECCV),  2012.


9.  以色列理工大学(The Technion),CGM Lab,L. Zelnik-Manor研究组的工作.

D. Rudoy, D.B Goldman, E. Shechtman and L.Zelnik-Manor, " Learning video saliency from human gaze using candidate selection ",  To appear in CVPR, 2013.

R. Margolin, A. Tal, and L. Zelnik-Manor, " What Makes a Patch Distinct? ",  To appear in CVPR, 2013.

R. Margolin, L. Zelnik-Manor, and A. Tal " SaliencyFor ImageManipulation ",  The Visual Computer, June 2012.

R.Margolin, L. Zelnik-Manor, and A. Tal " SaliencyFor ImageManipulation ",  Computer Graphics International (CGI) 2012.

S. Goferman, L. Zelnik-Manor, and A. Tal " Context-AwareSaliency Detection ", IEEE Trans. on Pattern Analysis and Machine Intelligence(PAMI), 34(10): 1915--1926,Oct. 2012.

M. Holtzman-Gazit, L. Zelnik-Manor and I.Yavne, " Salient Edges: A MultiScale Approach", ECCV 2010 Workshop on Vision for Cognitive Tasks.

S. Goferman, L. Zelnik-Manor, and A. Tal. Context-Aware Saliency Detection. CVPR 2010.


10. 美国西北大学Ying Wu研究组的工作.

Xiaohui Shen and Ying Wu, "A Unified Approach to Salient Object Detection via Low Rank Matrix Recovery", in IEEE Conference on Computer Vision and Pattern Recognition (CVPR)(Oral), 2012.


11. 清华大学程明明(Ming-Ming Cheng)相关工作。

SalientShape: Group Saliency in Image Collections. Ming-Ming Cheng, Niloy J. Mitra, Xiaolei Huang, Shi-Min Hu. Technical Report TR-120624, GGC Group, Tsinghua University.

Global Contrast based Salient Region Detection. Ming-Ming Cheng, Guo-Xin Zhang, Niloy J. Mitra, Xiaolei Huang, Shi-Min Hu. IEEE International Conference on Computer Vision and Pattern Recognition, CVPR2011.


12. MIT Graphics Group, Tilke Judd的研究工作.

Tilke Judd, Understanding and Predicting Where People Look. MIT PhD Thesis of Computer Science, 2011.

Tilke Judd, Frédo Durand, Antonio Torralba, A Benchmark of Computational Models of Saliency to Predict Human Fixations.
currently under review, also available as a 2012 MIT Tech Report.

Tilke Judd, Frédo Durand, Antonio Torralba, Fixations on Low-Resolution Images,Journal of Vision 2011.

Tilke Judd, Krista Ehinger, Frédo Durand, Antonio Torralba.Learning to predict where people look,International Conference on Computer Vision, ICCV 2009.

Judd提供了一个Saliency Benchmark. 并且总结了相关数据集。

http://people.csail.mit.edu/tjudd/SaliencyBenchmark/index.html


13. 大连理工大学卢湖川(Huchuan Lu)老师研究组的工作。

Yulin Xie, Huchuan Lu, Minghsuan Yang, Bayesian Saliency via Low and Mid Level Cues, IEEE Transaction On Image Processing, 2013.

Chuan Yang, Lihe Zhang, Huchuan Lu, Minghsuan Yang, Saliency Detection via Graph-Based Manifold Ranking, CVPR 2013.


 

自然图像抠图/视频抠像技术发展情况梳理(image matting, alpha matting, video matting)--计算机视觉专题1

http://blog.csdn.net/anshan1984/article/details/8581225

图像/视觉显著性检测技术发展情况梳理(Saliency Detection、Visual Attention)--计算机视觉专题2
http://blog.csdn.net/anshan1984/article/details/8657176

超像素分割技术发展情况梳理(Superpixel Segmentation)--计算机视觉专题3
http://blog.csdn.net/anshan1984/article/details/8918167


这篇关于深度学习tracking学习笔记(2):图像/视觉显著性检测技术发展情况梳理(Saliency Detection、Visual Attention)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1050199

相关文章

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、