分别利用线性回归、多项式回归分析工资与年限的关系

2024-06-10 20:04

本文主要是介绍分别利用线性回归、多项式回归分析工资与年限的关系,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、线性回归:

实验思路:

先分析线性回归的代码,然后结合Salary_dataset.csv内容分析,编写代码。

实验代码:

import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
import matplotlib.pyplot as plt# 1. 读取数据
data = pd.read_csv('Salary_dataset.csv')# 假设数据是干净的,没有缺失值或异常值
X = data['YearsExperience'].values.reshape(-1, 1)  # 特征列
y = data['Salary'].values  # 目标变量列# 2. 选取五个数据点作为训练集
# 这里我们随机选取五个数据点,你可以根据需要更改选取数据点的方式
train_indices = np.random.choice(len(data), 5, replace=False)
X_train = X[train_indices]
y_train = y[train_indices]# 剩余的数据作为测试集
X_test = np.delete(X, train_indices, axis=0)
y_test = np.delete(y, train_indices, axis=0)# 3. 训练线性回归模型
model = LinearRegression()
model.fit(X_train, y_train)# 4. 评估模型
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
r2 = r2_score(y_test, y_pred)print(f'Mean Squared Error: {mse}')
print(f'Root Mean Squared Error: {rmse}')
print(f'R² score: {r2}')# 5. 可视化结果
plt.scatter(X_train, y_train, color='blue', label='Training Data')
plt.scatter(X_test, y_test, color='green', label='Test Data')
plt.plot(X_test, y_pred, color='red', label='Predicted Salary')
plt.xlabel('Years of Experience')
plt.ylabel('Salary')
plt.title('Salary Prediction based on Years of Experience')
plt.legend()
plt.show()

实验结果:

二、多项式回归:

实验思路:

先分析多项式回归的代码,然后结合Salary_dataset.csv内容分析,编写代码。

实验代码:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression# 读取CSV文件
data = pd.read_csv('Salary_dataset.csv')
X = data['YearsExperience'].values.reshape(-1, 1)  # 特征
y = data['Salary'].values  # 目标变量# 假设的真实函数(这里只是一个例子,实际上我们不知道真实函数)
def true_function(x):return 50000 + 8000 * x + 1000 * x ** 2  # 假设的真实工资与年限关系# 创建X值的范围用于绘制真实函数和模型预测
X_plot = np.linspace(X.min(), X.max(), 100).reshape(-1, 1)
y_true = true_function(X_plot)# 定义多项式次数
degrees = [1, 2, 3]# 初始化图表和子图
plt.figure(figsize=(10, 6))
plt.scatter(X, y, color='darkorange', label='Samples')  # 绘制样本点
plt.plot(X_plot, y_true, color='green', label='True function')  # 绘制真实函数
plt.xlabel('Years of Experience')
plt.ylabel('Salary')
plt.legend(loc='upper left')# 对每个多项式次数进行训练和可视化
for i, degree in enumerate(degrees):polynomial_features = PolynomialFeatures(degree=degree, include_bias=False)linear_regression = LinearRegression()pipeline = Pipeline([("polynomial_features", polynomial_features),("linear_regression", linear_regression)])pipeline.fit(X, y)# 使用管道进行预测y_plot = pipeline.predict(X_plot)# 绘制模型拟合曲线plt.plot(X_plot, y_plot, label=f'Degree {degree} Model')# 显示图例
plt.legend(loc='best')
plt.show()

实验结果:

这篇关于分别利用线性回归、多项式回归分析工资与年限的关系的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1049130

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

java中新生代和老生代的关系说明

《java中新生代和老生代的关系说明》:本文主要介绍java中新生代和老生代的关系说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、内存区域划分新生代老年代二、对象生命周期与晋升流程三、新生代与老年代的协作机制1. 跨代引用处理2. 动态年龄判定3. 空间分

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意